Enhancing Diagnostic Accuracy of Transformer Faults Using Teaching-Learning-Based Optimization

溶解气体分析 变压器 计算机科学 变压器油 稳健性(进化) 诊断准确性 可靠性工程 人工智能 工程类 电压 化学 电气工程 生物化学 医学 基因 放射科
作者
Sherif S. M. Ghoneim,Karar Mahmoud,Matti Lehtonen,Mohamed M. F. Darwish
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 30817-30832 被引量:67
标识
DOI:10.1109/access.2021.3060288
摘要

The early detection of the transformer faults with high accuracy rates guarantees the continuous operation of the power system networks. Dissolved gas analysis (DGA) is a technique that is used to detect or diagnose the transformer faults based on the dissolved gases due to the electrical and thermal stresses influencing the insulating oil. Many attempts are accomplished to discover an appropriate technique to correctly diagnose the transformer fault types, such as the Duval Triangle method, Rogers' ratios method, and IEC standard 60599. In addition, several artificial intelligence, classification, and optimization techniques are merged with the previous methods to enhance their diagnostic accuracy. In this article, a novel approach is proposed to enhance the diagnostic accuracy of the transformer faults based on introducing new gas concentration percentages limits and gases' ratios that help to separate the conflict between the diverse transformer faults. To do so, an optimization model is established which simultaneously optimizes both gas concentration percentages and ratios so as to maximize the agreement of the diagnostic faults with respect to the actual ones achieving the high diagnostic accuracy of the transformer faults. Accordingly, an efficient teaching-learning based optimization (TLBO) is developed to accurately solve the optimization model considering training datasets (Egyptian chemical laboratory and literature). The proposed TLBO algorithm enhances diagnostic accuracy at a significant level, which is higher than some of the other DGA techniques that were presented in the literature. The robustness of the proposed optimization-based approach is confirmed against uncertainty in measurement where its accuracy is not affected by the uncertainty rates. To prove the efficacy of the proposed approach, it is compared with five existing approaches using an out-of-sample dataset where a superior agreement rate is reached for the different fault types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
you发布了新的文献求助10
1秒前
xxx7749完成签到,获得积分10
3秒前
3秒前
Ava应助羊青丝采纳,获得10
4秒前
HXie发布了新的文献求助10
5秒前
jenniefer发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
微笑的依凝完成签到,获得积分10
9秒前
10秒前
溪秋白发布了新的文献求助10
11秒前
liux发布了新的文献求助10
13秒前
benben7发布了新的文献求助10
13秒前
FODCOC发布了新的文献求助200
14秒前
LI发布了新的文献求助10
16秒前
16秒前
勤劳的世平完成签到,获得积分10
17秒前
DDX完成签到 ,获得积分10
17秒前
overThat发布了新的文献求助10
18秒前
19秒前
20秒前
廿廿应助科研通管家采纳,获得10
21秒前
anonymous发布了新的文献求助10
21秒前
21秒前
廿廿应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得30
22秒前
Singularity应助科研通管家采纳,获得20
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
廿廿应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
A.y.w应助科研通管家采纳,获得50
22秒前
pluto应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084398
求助须知:如何正确求助?哪些是违规求助? 2737347
关于积分的说明 7544854
捐赠科研通 2386981
什么是DOI,文献DOI怎么找? 1265740
科研通“疑难数据库(出版商)”最低求助积分说明 613167
版权声明 598320