Enhancing Diagnostic Accuracy of Transformer Faults Using Teaching-Learning-Based Optimization

溶解气体分析 变压器 计算机科学 变压器油 稳健性(进化) 诊断准确性 可靠性工程 人工智能 工程类 电压 化学 电气工程 生物化学 医学 基因 放射科
作者
Sherif S. M. Ghoneim,Karar Mahmoud,Matti Lehtonen,Mohamed M. F. Darwish
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 30817-30832 被引量:67
标识
DOI:10.1109/access.2021.3060288
摘要

The early detection of the transformer faults with high accuracy rates guarantees the continuous operation of the power system networks. Dissolved gas analysis (DGA) is a technique that is used to detect or diagnose the transformer faults based on the dissolved gases due to the electrical and thermal stresses influencing the insulating oil. Many attempts are accomplished to discover an appropriate technique to correctly diagnose the transformer fault types, such as the Duval Triangle method, Rogers' ratios method, and IEC standard 60599. In addition, several artificial intelligence, classification, and optimization techniques are merged with the previous methods to enhance their diagnostic accuracy. In this article, a novel approach is proposed to enhance the diagnostic accuracy of the transformer faults based on introducing new gas concentration percentages limits and gases' ratios that help to separate the conflict between the diverse transformer faults. To do so, an optimization model is established which simultaneously optimizes both gas concentration percentages and ratios so as to maximize the agreement of the diagnostic faults with respect to the actual ones achieving the high diagnostic accuracy of the transformer faults. Accordingly, an efficient teaching-learning based optimization (TLBO) is developed to accurately solve the optimization model considering training datasets (Egyptian chemical laboratory and literature). The proposed TLBO algorithm enhances diagnostic accuracy at a significant level, which is higher than some of the other DGA techniques that were presented in the literature. The robustness of the proposed optimization-based approach is confirmed against uncertainty in measurement where its accuracy is not affected by the uncertainty rates. To prove the efficacy of the proposed approach, it is compared with five existing approaches using an out-of-sample dataset where a superior agreement rate is reached for the different fault types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助shengChen采纳,获得10
1秒前
宁静致远发布了新的文献求助10
2秒前
zhenpeng8888完成签到 ,获得积分10
2秒前
霜序初四完成签到 ,获得积分10
2秒前
3秒前
爆米花应助青木蓝采纳,获得10
3秒前
顾矜应助frank采纳,获得10
4秒前
heavennew完成签到,获得积分10
4秒前
充电宝应助绘梨衣采纳,获得10
5秒前
华仔应助励志小薛采纳,获得10
5秒前
5秒前
5秒前
单薄新烟发布了新的文献求助10
6秒前
6秒前
桐桐应助小王采纳,获得10
6秒前
7秒前
7秒前
7秒前
楚岸发布了新的文献求助10
9秒前
阿强哥20241101完成签到,获得积分10
9秒前
TQY完成签到,获得积分10
10秒前
Khr1stINK发布了新的文献求助10
10秒前
宁静致远完成签到,获得积分10
10秒前
mxbyccbaby完成签到,获得积分10
11秒前
11秒前
楼寒天发布了新的文献求助30
11秒前
11秒前
jdmeme完成签到 ,获得积分10
12秒前
DVD完成签到 ,获得积分10
13秒前
学术嫪毐完成签到,获得积分10
13秒前
Xyyy发布了新的文献求助10
14秒前
uu完成签到,获得积分10
14秒前
小蘑菇应助赵赵赵采纳,获得10
14秒前
阿兹卡班狂徒完成签到 ,获得积分10
14秒前
14秒前
yuefeng发布了新的文献求助10
15秒前
澳臻白发布了新的文献求助10
15秒前
16秒前
刘大妮发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794