Enhancing Diagnostic Accuracy of Transformer Faults Using Teaching-Learning-Based Optimization

溶解气体分析 变压器 计算机科学 变压器油 稳健性(进化) 诊断准确性 可靠性工程 人工智能 工程类 电压 化学 电气工程 生物化学 医学 基因 放射科
作者
Sherif S. M. Ghoneim,Karar Mahmoud,Matti Lehtonen,Mohamed M. F. Darwish
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 30817-30832 被引量:67
标识
DOI:10.1109/access.2021.3060288
摘要

The early detection of the transformer faults with high accuracy rates guarantees the continuous operation of the power system networks. Dissolved gas analysis (DGA) is a technique that is used to detect or diagnose the transformer faults based on the dissolved gases due to the electrical and thermal stresses influencing the insulating oil. Many attempts are accomplished to discover an appropriate technique to correctly diagnose the transformer fault types, such as the Duval Triangle method, Rogers' ratios method, and IEC standard 60599. In addition, several artificial intelligence, classification, and optimization techniques are merged with the previous methods to enhance their diagnostic accuracy. In this article, a novel approach is proposed to enhance the diagnostic accuracy of the transformer faults based on introducing new gas concentration percentages limits and gases' ratios that help to separate the conflict between the diverse transformer faults. To do so, an optimization model is established which simultaneously optimizes both gas concentration percentages and ratios so as to maximize the agreement of the diagnostic faults with respect to the actual ones achieving the high diagnostic accuracy of the transformer faults. Accordingly, an efficient teaching-learning based optimization (TLBO) is developed to accurately solve the optimization model considering training datasets (Egyptian chemical laboratory and literature). The proposed TLBO algorithm enhances diagnostic accuracy at a significant level, which is higher than some of the other DGA techniques that were presented in the literature. The robustness of the proposed optimization-based approach is confirmed against uncertainty in measurement where its accuracy is not affected by the uncertainty rates. To prove the efficacy of the proposed approach, it is compared with five existing approaches using an out-of-sample dataset where a superior agreement rate is reached for the different fault types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栖木木完成签到 ,获得积分10
刚刚
传奇3应助亦玉采纳,获得10
刚刚
笠柚完成签到,获得积分10
1秒前
Dreamchaser完成签到,获得积分20
2秒前
科目三应助施傲天采纳,获得10
2秒前
张蓝天完成签到,获得积分20
2秒前
香蕉觅云应助念梦采纳,获得10
3秒前
3秒前
NexusExplorer应助夏雪儿采纳,获得10
4秒前
qql发布了新的文献求助10
4秒前
酷酷的涫完成签到 ,获得积分10
4秒前
麦克雷发布了新的文献求助10
4秒前
不想干活应助熊仔采纳,获得10
5秒前
萬梓渝发布了新的文献求助10
5秒前
英俊的铭应助是个帅哥采纳,获得10
5秒前
6秒前
yyst发布了新的文献求助10
6秒前
8秒前
白苏su应助111采纳,获得10
8秒前
Paddi完成签到 ,获得积分10
8秒前
8秒前
惜灵完成签到 ,获得积分10
9秒前
9秒前
嘻嘻哈哈完成签到 ,获得积分10
12秒前
打打应助青城山下小星瞳采纳,获得10
14秒前
iris601发布了新的文献求助10
15秒前
天天快乐应助懒羊羊采纳,获得10
15秒前
17秒前
111完成签到,获得积分10
17秒前
天真的青烟完成签到,获得积分10
18秒前
Lucas应助现代孤萍采纳,获得10
19秒前
大模型应助马越智能服务采纳,获得10
20秒前
ELENA完成签到,获得积分10
20秒前
XHT完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
科研通AI6应助念梦采纳,获得10
23秒前
初小花完成签到,获得积分10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994