Enhancing Diagnostic Accuracy of Transformer Faults Using Teaching-Learning-Based Optimization

溶解气体分析 变压器 计算机科学 变压器油 稳健性(进化) 诊断准确性 可靠性工程 人工智能 工程类 电压 化学 电气工程 生物化学 医学 基因 放射科
作者
Sherif S. M. Ghoneim,Karar Mahmoud,Matti Lehtonen,Mohamed M. F. Darwish
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 30817-30832 被引量:67
标识
DOI:10.1109/access.2021.3060288
摘要

The early detection of the transformer faults with high accuracy rates guarantees the continuous operation of the power system networks. Dissolved gas analysis (DGA) is a technique that is used to detect or diagnose the transformer faults based on the dissolved gases due to the electrical and thermal stresses influencing the insulating oil. Many attempts are accomplished to discover an appropriate technique to correctly diagnose the transformer fault types, such as the Duval Triangle method, Rogers' ratios method, and IEC standard 60599. In addition, several artificial intelligence, classification, and optimization techniques are merged with the previous methods to enhance their diagnostic accuracy. In this article, a novel approach is proposed to enhance the diagnostic accuracy of the transformer faults based on introducing new gas concentration percentages limits and gases' ratios that help to separate the conflict between the diverse transformer faults. To do so, an optimization model is established which simultaneously optimizes both gas concentration percentages and ratios so as to maximize the agreement of the diagnostic faults with respect to the actual ones achieving the high diagnostic accuracy of the transformer faults. Accordingly, an efficient teaching-learning based optimization (TLBO) is developed to accurately solve the optimization model considering training datasets (Egyptian chemical laboratory and literature). The proposed TLBO algorithm enhances diagnostic accuracy at a significant level, which is higher than some of the other DGA techniques that were presented in the literature. The robustness of the proposed optimization-based approach is confirmed against uncertainty in measurement where its accuracy is not affected by the uncertainty rates. To prove the efficacy of the proposed approach, it is compared with five existing approaches using an out-of-sample dataset where a superior agreement rate is reached for the different fault types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
散热发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
嘀哩嘀哩完成签到,获得积分10
4秒前
5秒前
zhanglh完成签到,获得积分10
5秒前
BHX关闭了BHX文献求助
5秒前
cc完成签到,获得积分10
6秒前
7秒前
7秒前
活着完成签到,获得积分10
8秒前
隐形曼青应助汎影采纳,获得10
9秒前
桑榆。完成签到,获得积分20
9秒前
华仔应助myg8627采纳,获得10
11秒前
11秒前
cc关闭了cc文献求助
11秒前
cc关闭了cc文献求助
11秒前
斯文败类应助tina采纳,获得10
12秒前
12秒前
Ava应助小桃枝采纳,获得10
12秒前
12秒前
12秒前
12秒前
iNk应助菜菜采纳,获得20
12秒前
13秒前
13秒前
shang完成签到 ,获得积分10
14秒前
杨冀军完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Nimeide完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
fffgz发布了新的文献求助10
17秒前
江流发布了新的文献求助10
17秒前
麦当劳薯条完成签到,获得积分20
20秒前
orixero应助汎影采纳,获得10
20秒前
王记伟关注了科研通微信公众号
20秒前
过客发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536670
求助须知:如何正确求助?哪些是违规求助? 4624270
关于积分的说明 14591267
捐赠科研通 4564769
什么是DOI,文献DOI怎么找? 2501907
邀请新用户注册赠送积分活动 1480641
关于科研通互助平台的介绍 1451943