Enhancing Diagnostic Accuracy of Transformer Faults Using Teaching-Learning-Based Optimization

溶解气体分析 变压器 计算机科学 变压器油 稳健性(进化) 诊断准确性 可靠性工程 人工智能 工程类 电压 化学 电气工程 医学 生物化学 放射科 基因
作者
Sherif S. M. Ghoneim,Karar Mahmoud,Matti Lehtonen,Mohamed M. F. Darwish
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 30817-30832 被引量:67
标识
DOI:10.1109/access.2021.3060288
摘要

The early detection of the transformer faults with high accuracy rates guarantees the continuous operation of the power system networks. Dissolved gas analysis (DGA) is a technique that is used to detect or diagnose the transformer faults based on the dissolved gases due to the electrical and thermal stresses influencing the insulating oil. Many attempts are accomplished to discover an appropriate technique to correctly diagnose the transformer fault types, such as the Duval Triangle method, Rogers' ratios method, and IEC standard 60599. In addition, several artificial intelligence, classification, and optimization techniques are merged with the previous methods to enhance their diagnostic accuracy. In this article, a novel approach is proposed to enhance the diagnostic accuracy of the transformer faults based on introducing new gas concentration percentages limits and gases' ratios that help to separate the conflict between the diverse transformer faults. To do so, an optimization model is established which simultaneously optimizes both gas concentration percentages and ratios so as to maximize the agreement of the diagnostic faults with respect to the actual ones achieving the high diagnostic accuracy of the transformer faults. Accordingly, an efficient teaching-learning based optimization (TLBO) is developed to accurately solve the optimization model considering training datasets (Egyptian chemical laboratory and literature). The proposed TLBO algorithm enhances diagnostic accuracy at a significant level, which is higher than some of the other DGA techniques that were presented in the literature. The robustness of the proposed optimization-based approach is confirmed against uncertainty in measurement where its accuracy is not affected by the uncertainty rates. To prove the efficacy of the proposed approach, it is compared with five existing approaches using an out-of-sample dataset where a superior agreement rate is reached for the different fault types.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
羽翼完成签到,获得积分10
1秒前
luo发布了新的文献求助10
2秒前
ldk完成签到,获得积分10
3秒前
3秒前
潇洒的梦安完成签到,获得积分10
4秒前
XIAOWANG完成签到,获得积分10
6秒前
10秒前
11秒前
12秒前
12秒前
核桃应助科研通管家采纳,获得30
13秒前
Akim应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得30
13秒前
13秒前
Akim应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得30
13秒前
13秒前
李明应助科研通管家采纳,获得10
13秒前
核桃应助科研通管家采纳,获得30
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
李明应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
14秒前
14秒前
Sea_U应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
14秒前
核桃应助科研通管家采纳,获得30
14秒前
Sea_U应助科研通管家采纳,获得10
14秒前
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
bkagyin应助科研通管家采纳,获得10
14秒前
Ky_Mac应助科研通管家采纳,获得30
14秒前
无极微光应助科研通管家采纳,获得20
14秒前
核桃应助科研通管家采纳,获得30
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
天天快乐应助科研通管家采纳,获得10
14秒前
CAOHOU应助科研通管家采纳,获得10
14秒前
XIAOWANG发布了新的文献求助30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742180
求助须知:如何正确求助?哪些是违规求助? 5406715
关于积分的说明 15344214
捐赠科研通 4883585
什么是DOI,文献DOI怎么找? 2625155
邀请新用户注册赠送积分活动 1574005
关于科研通互助平台的介绍 1530964