亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The future of CT: deep learning reconstruction

图像质量 迭代重建 医学 深度学习 人工智能 超级计算机 成像技术 计算机科学 医学物理学 放射科 图像(数学) 并行计算
作者
C.M. McLeavy,M.H. Chunara,R.J. Gravell,Abdul Rauf,A. Cushnie,Conn Talbot,Ray Hawkins
出处
期刊:Clinical Radiology [Elsevier]
卷期号:76 (6): 407-415 被引量:63
标识
DOI:10.1016/j.crad.2021.01.010
摘要

There have been substantial advances in computed tomography (CT) technology since its introduction in the 1970s. More recently, these advances have focused on image reconstruction. Deep learning reconstruction (DLR) is the latest complex reconstruction algorithm to be introduced, which harnesses advances in artificial intelligence (AI) and affordable supercomputer technology to achieve the previously elusive triad of high image quality, low radiation dose, and fast reconstruction speeds. The dose reductions achieved with DLR are redefining ultra-low-dose into the realm of plain radiographs whilst maintaining image quality. This review aims to demonstrate the advantages of DLR over other reconstruction methods in terms of dose reduction and image quality in addition to being able to tailor protocols to specific clinical situations. DLR is the future of CT technology and should be considered when procuring new scanners. There have been substantial advances in computed tomography (CT) technology since its introduction in the 1970s. More recently, these advances have focused on image reconstruction. Deep learning reconstruction (DLR) is the latest complex reconstruction algorithm to be introduced, which harnesses advances in artificial intelligence (AI) and affordable supercomputer technology to achieve the previously elusive triad of high image quality, low radiation dose, and fast reconstruction speeds. The dose reductions achieved with DLR are redefining ultra-low-dose into the realm of plain radiographs whilst maintaining image quality. This review aims to demonstrate the advantages of DLR over other reconstruction methods in terms of dose reduction and image quality in addition to being able to tailor protocols to specific clinical situations. DLR is the future of CT technology and should be considered when procuring new scanners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣椒完成签到 ,获得积分10
28秒前
46秒前
52秒前
123关闭了123文献求助
1分钟前
丘比特应助救救小王叭采纳,获得10
1分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Flexy发布了新的文献求助10
3分钟前
3分钟前
核桃发布了新的文献求助10
4分钟前
田様应助Monet采纳,获得10
4分钟前
4分钟前
凶狠的寄风完成签到 ,获得积分10
4分钟前
Monet发布了新的文献求助10
4分钟前
4分钟前
A水暖五金批发张哥完成签到,获得积分10
4分钟前
tan发布了新的文献求助20
4分钟前
郗妫完成签到,获得积分10
4分钟前
情怀应助科研通管家采纳,获得10
4分钟前
生动土匪发布了新的文献求助10
5分钟前
缓慢的枫叶应助tan采纳,获得60
5分钟前
5分钟前
凉月发布了新的文献求助10
5分钟前
大风车发布了新的文献求助10
5分钟前
凉月完成签到,获得积分20
5分钟前
科研通AI2S应助凉月采纳,获得10
5分钟前
柴三岁完成签到,获得积分20
6分钟前
酷波er应助科研通管家采纳,获得10
6分钟前
顾君如完成签到 ,获得积分10
7分钟前
汉堡包应助柴三岁采纳,获得10
7分钟前
止戈完成签到 ,获得积分10
7分钟前
7分钟前
zhangxr发布了新的文献求助10
7分钟前
科研通AI2S应助zhangxr采纳,获得10
8分钟前
8分钟前
柴三岁发布了新的文献求助10
8分钟前
xx完成签到 ,获得积分10
9分钟前
溜圈吃不胖完成签到,获得积分10
9分钟前
123发布了新的文献求助10
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899688
捐赠科研通 2472818
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142