1 km monthly temperature and precipitation dataset for China from 1901 to 2017

Cru公司 缩小尺度 气候学 双线性插值 环境科学 降水 均方误差 插值(计算机图形学) 多元插值 气象学 代理(统计) 双三次插值 计算机科学 统计 地理 数学 地质学 计算机图形学(图像) 动画
作者
Shouzhang Peng,Yongxia Ding,Wenzhao Liu,Zhi Li
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:11 (4): 1931-1946 被引量:963
标识
DOI:10.5194/essd-11-1931-2019
摘要

Abstract. High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study describes a 0.5′ (∼ 1 km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean proxy monthly temperatures, TMPs) and precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30′ Climatic Research Unit (CRU) time series dataset with the climatology dataset of WorldClim using delta spatial downscaling and evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances of the WorldClim data with different spatial resolutions and the 30′ original CRU dataset using the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance at higher spatial resolution, while the 30′ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations of the 30′ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5′ dataset downscaled by bilinear interpolation) decreased by 35.4 %–48.7 % for TMPs and by 25.7 % for PRE. The root-mean-square error decreased by 32.4 %–44.9 % for TMPs and by 25.8 % for PRE. The Nash–Sutcliffe efficiency coefficients increased by 9.6 %–13.8 % for TMPs and by 31.6 % for PRE, and correlation coefficients increased by 0.2 %–0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be evaluated well using observations at the station. Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset and was concluded to be useful for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at https://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and https://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炎魔之王拉格纳罗斯完成签到,获得积分10
刚刚
内向苡完成签到,获得积分10
1秒前
以筱发布了新的文献求助10
3秒前
bhkwxdxy完成签到,获得积分10
4秒前
悦耳虔纹完成签到 ,获得积分10
4秒前
xx完成签到,获得积分10
4秒前
大气灵枫完成签到,获得积分10
4秒前
妮妮完成签到,获得积分10
5秒前
7秒前
Struggle完成签到 ,获得积分10
8秒前
8秒前
秦兴虎完成签到,获得积分10
9秒前
Drew11完成签到,获得积分10
9秒前
风趣青槐完成签到,获得积分10
11秒前
科隆龙完成签到,获得积分10
12秒前
12秒前
饱满一手完成签到 ,获得积分10
12秒前
99完成签到,获得积分10
14秒前
枕星发布了新的文献求助10
14秒前
drlq2022完成签到,获得积分10
15秒前
王山完成签到,获得积分10
16秒前
自觉寒梦完成签到,获得积分10
17秒前
ding应助缥缈一刀采纳,获得10
17秒前
pakiorder发布了新的文献求助10
17秒前
专心搞学术完成签到,获得积分10
17秒前
bkagyin应助zzcherished采纳,获得10
19秒前
你怎么这么可爱啊完成签到,获得积分10
19秒前
20秒前
研友_Lmg1gZ完成签到,获得积分10
20秒前
Crazyer完成签到,获得积分10
20秒前
Shuey完成签到,获得积分10
21秒前
XXXXH完成签到,获得积分10
21秒前
Z可完成签到 ,获得积分10
22秒前
momo123完成签到 ,获得积分10
22秒前
高兴的书竹完成签到 ,获得积分10
23秒前
mp5完成签到,获得积分10
24秒前
薯条一克完成签到 ,获得积分10
24秒前
zzcherished完成签到,获得积分10
25秒前
阿军完成签到,获得积分10
25秒前
糊涂的皮皮虾完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029