1 km monthly temperature and precipitation dataset for China from 1901 to 2017

Cru公司 缩小尺度 气候学 双线性插值 环境科学 降水 均方误差 插值(计算机图形学) 多元插值 气象学 代理(统计) 双三次插值 计算机科学 统计 地理 数学 地质学 动画 计算机图形学(图像)
作者
Shouzhang Peng,Yongxia Ding,Wenzhao Liu,Zhi Li
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:11 (4): 1931-1946 被引量:963
标识
DOI:10.5194/essd-11-1931-2019
摘要

Abstract. High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study describes a 0.5′ (∼ 1 km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean proxy monthly temperatures, TMPs) and precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30′ Climatic Research Unit (CRU) time series dataset with the climatology dataset of WorldClim using delta spatial downscaling and evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances of the WorldClim data with different spatial resolutions and the 30′ original CRU dataset using the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance at higher spatial resolution, while the 30′ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations of the 30′ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5′ dataset downscaled by bilinear interpolation) decreased by 35.4 %–48.7 % for TMPs and by 25.7 % for PRE. The root-mean-square error decreased by 32.4 %–44.9 % for TMPs and by 25.8 % for PRE. The Nash–Sutcliffe efficiency coefficients increased by 9.6 %–13.8 % for TMPs and by 31.6 % for PRE, and correlation coefficients increased by 0.2 %–0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be evaluated well using observations at the station. Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset and was concluded to be useful for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at https://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and https://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wuxinrong完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
2秒前
天天快乐应助yaoyinlin采纳,获得10
2秒前
无花果应助vv的平行宇宙采纳,获得10
2秒前
转转发布了新的文献求助30
3秒前
apong发布了新的文献求助10
3秒前
3秒前
曾志伟发布了新的文献求助10
3秒前
顺鑫完成签到 ,获得积分10
4秒前
4秒前
CC发布了新的文献求助10
4秒前
4秒前
咩咩咩发布了新的文献求助10
5秒前
5秒前
大吉岭完成签到,获得积分10
5秒前
SGOM完成签到 ,获得积分10
5秒前
6秒前
飞翔的荷兰人完成签到,获得积分10
7秒前
king完成签到,获得积分20
7秒前
Na完成签到,获得积分20
7秒前
JamesPei应助nqmzh采纳,获得10
8秒前
sherry完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
婆婆丁完成签到,获得积分0
9秒前
大吉岭发布了新的文献求助50
9秒前
琪琪完成签到 ,获得积分10
9秒前
HSY发布了新的文献求助10
9秒前
9秒前
10秒前
xinL完成签到,获得积分10
10秒前
Na发布了新的文献求助10
10秒前
10秒前
小高完成签到,获得积分10
10秒前
11秒前
慕青应助水果咔咔咔采纳,获得10
12秒前
13秒前
公西傲蕾完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027