1 km monthly temperature and precipitation dataset for China from 1901 to 2017

Cru公司 缩小尺度 气候学 双线性插值 环境科学 降水 均方误差 插值(计算机图形学) 多元插值 气象学 代理(统计) 双三次插值 计算机科学 统计 地理 数学 地质学 动画 计算机图形学(图像)
作者
Shouzhang Peng,Yongxia Ding,Wenzhao Liu,Zhi Li
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:11 (4): 1931-1946 被引量:963
标识
DOI:10.5194/essd-11-1931-2019
摘要

Abstract. High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study describes a 0.5′ (∼ 1 km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean proxy monthly temperatures, TMPs) and precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30′ Climatic Research Unit (CRU) time series dataset with the climatology dataset of WorldClim using delta spatial downscaling and evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances of the WorldClim data with different spatial resolutions and the 30′ original CRU dataset using the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance at higher spatial resolution, while the 30′ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations of the 30′ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5′ dataset downscaled by bilinear interpolation) decreased by 35.4 %–48.7 % for TMPs and by 25.7 % for PRE. The root-mean-square error decreased by 32.4 %–44.9 % for TMPs and by 25.8 % for PRE. The Nash–Sutcliffe efficiency coefficients increased by 9.6 %–13.8 % for TMPs and by 31.6 % for PRE, and correlation coefficients increased by 0.2 %–0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be evaluated well using observations at the station. Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset and was concluded to be useful for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at https://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and https://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
俏皮半凡发布了新的文献求助10
1秒前
1秒前
充电宝应助清秀的小刺猬采纳,获得10
1秒前
Hello应助诡异乐园采纳,获得30
2秒前
小C发布了新的文献求助10
3秒前
勤恳青亦发布了新的文献求助10
3秒前
3秒前
4秒前
远方发布了新的文献求助10
4秒前
潇涯应助一一采纳,获得10
4秒前
gnufgg完成签到,获得积分10
4秒前
4秒前
ethan完成签到,获得积分20
4秒前
英姑应助木槿采纳,获得10
5秒前
hh完成签到,获得积分10
5秒前
邓111111完成签到 ,获得积分10
5秒前
秋秋儿发布了新的文献求助10
6秒前
6秒前
6秒前
EWW完成签到,获得积分10
7秒前
善良的雨筠完成签到,获得积分10
7秒前
音吹完成签到,获得积分10
7秒前
CipherSage应助陈住气采纳,获得10
7秒前
8秒前
kelakola完成签到,获得积分10
8秒前
8秒前
斯文败类应助咖褐采纳,获得10
8秒前
hh发布了新的文献求助10
9秒前
科研通AI6应助Albert采纳,获得10
9秒前
wanci应助勤恳青亦采纳,获得10
9秒前
LL发布了新的文献求助10
9秒前
10秒前
笑忘书发布了新的文献求助10
10秒前
王多鱼发布了新的文献求助10
10秒前
HYH完成签到,获得积分10
11秒前
11秒前
11秒前
18863933521发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939