1 km monthly temperature and precipitation dataset for China from 1901 to 2017

Cru公司 缩小尺度 气候学 双线性插值 环境科学 降水 均方误差 插值(计算机图形学) 多元插值 气象学 代理(统计) 双三次插值 计算机科学 统计 地理 数学 地质学 计算机图形学(图像) 动画
作者
Shouzhang Peng,Yongxia Ding,Wenzhao Liu,Zhi Li
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:11 (4): 1931-1946 被引量:963
标识
DOI:10.5194/essd-11-1931-2019
摘要

Abstract. High-spatial-resolution and long-term climate data are highly desirable for understanding climate-related natural processes. China covers a large area with a low density of weather stations in some (e.g., mountainous) regions. This study describes a 0.5′ (∼ 1 km) dataset of monthly air temperatures at 2 m (minimum, maximum, and mean proxy monthly temperatures, TMPs) and precipitation (PRE) for China in the period of 1901–2017. The dataset was spatially downscaled from the 30′ Climatic Research Unit (CRU) time series dataset with the climatology dataset of WorldClim using delta spatial downscaling and evaluated using observations collected in 1951–2016 by 496 weather stations across China. Prior to downscaling, we evaluated the performances of the WorldClim data with different spatial resolutions and the 30′ original CRU dataset using the observations, revealing that their qualities were overall satisfactory. Specifically, WorldClim data exhibited better performance at higher spatial resolution, while the 30′ original CRU dataset had low biases and high performances. Bicubic, bilinear, and nearest-neighbor interpolation methods employed in downscaling processes were compared, and bilinear interpolation was found to exhibit the best performance to generate the downscaled dataset. Compared with the evaluations of the 30′ original CRU dataset, the mean absolute error of the new dataset (i.e., of the 0.5′ dataset downscaled by bilinear interpolation) decreased by 35.4 %–48.7 % for TMPs and by 25.7 % for PRE. The root-mean-square error decreased by 32.4 %–44.9 % for TMPs and by 25.8 % for PRE. The Nash–Sutcliffe efficiency coefficients increased by 9.6 %–13.8 % for TMPs and by 31.6 % for PRE, and correlation coefficients increased by 0.2 %–0.4 % for TMPs and by 5.0 % for PRE. The new dataset could provide detailed climatology data and annual trends of all climatic variables across China, and the results could be evaluated well using observations at the station. Although the new dataset was not evaluated before 1950 owing to data unavailability, the quality of the new dataset in the period of 1901–2017 depended on the quality of the original CRU and WorldClim datasets. Therefore, the new dataset was reliable, as the downscaling procedure further improved the quality and spatial resolution of the CRU dataset and was concluded to be useful for investigations related to climate change across China. The dataset presented in this article has been published in the Network Common Data Form (NetCDF) at https://doi.org/10.5281/zenodo.3114194 for precipitation (Peng, 2019a) and https://doi.org/10.5281/zenodo.3185722 for air temperatures at 2 m (Peng, 2019b) and includes 156 NetCDF files compressed in zip format and one user guidance text file.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助菜虫虫采纳,获得10
刚刚
小刺猬发布了新的文献求助10
刚刚
小薛超人冒泡泡完成签到,获得积分10
刚刚
Doctor_Peng完成签到,获得积分10
1秒前
1313131完成签到,获得积分10
1秒前
雾野与晚风完成签到,获得积分10
1秒前
轩1发布了新的文献求助10
2秒前
2秒前
舒心的绿草完成签到,获得积分10
2秒前
yu完成签到,获得积分10
3秒前
dh完成签到,获得积分0
3秒前
科目三应助1028181661采纳,获得10
3秒前
4秒前
蔬菜狗狗发布了新的文献求助20
5秒前
东方城完成签到,获得积分10
5秒前
spd完成签到,获得积分10
5秒前
huoyunli完成签到,获得积分10
5秒前
wan完成签到,获得积分10
5秒前
昵称被注册完了完成签到,获得积分10
5秒前
健壮的秋寒完成签到,获得积分10
5秒前
粗犷的书包完成签到,获得积分10
6秒前
所所应助jrzsy采纳,获得200
8秒前
rika0429完成签到,获得积分20
8秒前
希望天下0贩的0应助lonf采纳,获得10
8秒前
xiongying完成签到,获得积分10
8秒前
甜美的秋尽完成签到,获得积分10
9秒前
皮皮完成签到 ,获得积分10
9秒前
ertredffg发布了新的文献求助10
9秒前
zzx完成签到 ,获得积分10
9秒前
9秒前
科研通AI2S应助huyang采纳,获得10
10秒前
huoyunli发布了新的文献求助10
10秒前
10秒前
10秒前
巴啦啦能量完成签到,获得积分10
11秒前
ZL完成签到 ,获得积分10
11秒前
yize完成签到,获得积分10
11秒前
包包琪完成签到 ,获得积分10
11秒前
LY完成签到 ,获得积分10
11秒前
rika0429发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716