作者
Yuchen Deng,Yuzhen Ge,Ming Xu,Qian Yu,Dequan Xiao,Siyu Yao,Ding Ma
摘要
ConspectusIn the field of heterogeneous catalysis, transition metal carbides (TMCs) have attracted growing and extensive attention as a group of important catalytic materials for a variety of energy-related reactions. Due to the incorporation of carbon atoms at the interstitial sites, TMCs possess much higher density of states near the Fermi level, endowing the material with noble-metal-like electron configuration and catalytic behaviors. Crystal structure, site occupancies, surface termination, and metal/carbon defects in the bulk phase or at the surface are the structural factors that influence the behavior of the TMCs in catalytic reactions.In the early studies of heterogeneous catalytic applications of TMCs, the carbide itself was used individually as the catalytically active site, which exhibited unique catalytic performance comparable to precious metal catalysts toward hydrogenation, dehydrogenation, isomerization, and hydrodeoxygenation. To promote the catalytic performance, the doping of secondary transition metals into the carbide lattice to form bimetallic carbides was extensively studied. As a recent development, the utilization of TMCs as functionalized catalyst supports has achieved a series of significant breakthroughs in low-temperature catalytic applications, including the reforming of alcohols, water–gas shift reactions, and the hydrogenation of functional groups for chemical production and biomass conversion. Generally, the excellence of TMCs as supports is attributed to three factors: the modulation of geometric and electronic structures of the supported metal centers, the special reactivity of TMC supports that accelerates certain elementary step and influences the surface coverage of intermediates, and the special interfacial properties at the metal–carbide interface that enhance the synergistic effect.In this Account, we will review recent discoveries from our group and other researchers on the special catalytic properties of face-centered cubic MoC (α-MoC) as both a special catalyst and a functional support that enables highly efficient low-temperature O–H bond activation for several important energy-related catalytic applications, including hydrogen evolution from aqueous phase methanol reforming, ultralow temperature water–gas shift reaction, and biomass conversion. In particular, α-MoC has been demonstrated to exhibit unprecedented strong interaction with the supported metals compared with other TMCs, which not only stabilizes the under-coordinated metal species (single atoms and layered clusters) under strong thermal perturbation and harsh reaction conditions but also tunes the charge density at the metal sites and modifies their catalytic behavior in C–H activation and CO chemisorption. We will discuss how to exploit the metal/α-MoC interaction and interfacial properties to construct CO-tolerant selective hydrogenation catalysts for nitroarene derivatives. Several examples of constructing bifunctional tandem catalytic systems using molybdenum carbides that enable hydrogen extraction and utilization in one-pot conversion of biomass substrates and Fischer–Tropsch synthesis are also highlighted.