Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:365: 113028-113028 被引量:637
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zwf123完成签到,获得积分10
1秒前
高高芷完成签到,获得积分10
1秒前
负责吃饭完成签到,获得积分10
4秒前
ganjqly应助毛毛球采纳,获得20
6秒前
罐罐儿完成签到,获得积分0
6秒前
王哈哈完成签到,获得积分10
6秒前
teborlee完成签到,获得积分10
10秒前
liangmh完成签到,获得积分10
10秒前
孙淑婷完成签到,获得积分20
10秒前
MY完成签到,获得积分20
10秒前
Xiaoyan完成签到,获得积分10
11秒前
方圆学术完成签到,获得积分10
13秒前
14秒前
Coral完成签到,获得积分10
17秒前
毛毛球完成签到,获得积分10
17秒前
汤圆完成签到,获得积分10
18秒前
王博士完成签到,获得积分10
18秒前
橘寄完成签到,获得积分10
18秒前
CDI和LIB完成签到,获得积分10
19秒前
like发布了新的文献求助10
20秒前
冷傲的帽子完成签到 ,获得积分10
23秒前
27秒前
内向南风完成签到 ,获得积分10
28秒前
华仔应助like采纳,获得10
32秒前
32秒前
32秒前
32秒前
soss完成签到,获得积分10
33秒前
35秒前
打打应助HXX采纳,获得30
37秒前
DrLuffy完成签到,获得积分10
37秒前
欢喜蛋挞发布了新的文献求助10
37秒前
37秒前
小杨完成签到,获得积分10
38秒前
彩色半烟完成签到,获得积分10
38秒前
土木研学僧完成签到,获得积分10
40秒前
SYLH应助负责吃饭采纳,获得20
40秒前
淡然的奎完成签到,获得积分10
41秒前
果粒橙完成签到 ,获得积分10
44秒前
丘比特应助似锦繁花采纳,获得10
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965787
求助须知:如何正确求助?哪些是违规求助? 3511088
关于积分的说明 11156314
捐赠科研通 3245709
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268