亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:829
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
胖玻璃球发布了新的文献求助10
7秒前
bzy666完成签到,获得积分20
10秒前
娅娃儿完成签到 ,获得积分10
19秒前
科研通AI6应助bzy666采纳,获得10
20秒前
科研通AI6应助胖玻璃球采纳,获得10
28秒前
科研通AI6应助胖玻璃球采纳,获得10
28秒前
37秒前
48秒前
53秒前
kuokka发布了新的文献求助10
57秒前
范特西完成签到 ,获得积分10
1分钟前
科研通AI6应助胖玻璃球采纳,获得10
1分钟前
CipherSage应助bare采纳,获得10
1分钟前
1分钟前
平淡如天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
泡泡完成签到 ,获得积分10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
胖玻璃球发布了新的文献求助10
1分钟前
1分钟前
Chocolat_Chaud完成签到,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助伍声痕采纳,获得10
1分钟前
阿俊完成签到 ,获得积分10
2分钟前
2分钟前
胖玻璃球发布了新的文献求助10
2分钟前
Doc_Ocean完成签到,获得积分10
2分钟前
zyjsunye完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
陈欣瑶完成签到 ,获得积分10
2分钟前
胖玻璃球发布了新的文献求助10
2分钟前
伍声痕发布了新的文献求助10
2分钟前
2分钟前
2分钟前
桐桐应助伍声痕采纳,获得10
2分钟前
海绵发布了新的文献求助10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454854
求助须知:如何正确求助?哪些是违规求助? 4562165
关于积分的说明 14284887
捐赠科研通 4486017
什么是DOI,文献DOI怎么找? 2457172
邀请新用户注册赠送积分活动 1447808
关于科研通互助平台的介绍 1423026