清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:829
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LINDENG2004完成签到 ,获得积分10
16秒前
大喜喜发布了新的文献求助50
37秒前
King16完成签到,获得积分10
1分钟前
碗碗豆喵完成签到 ,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
王梦秋完成签到 ,获得积分10
2分钟前
热情依白完成签到 ,获得积分10
2分钟前
yindi1991完成签到 ,获得积分10
3分钟前
3分钟前
欢呼亦绿完成签到,获得积分10
3分钟前
齐阳春完成签到 ,获得积分10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
宇文雨文完成签到 ,获得积分10
4分钟前
Lucas应助didididm采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
萝卜猪完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
没时间解释了完成签到 ,获得积分10
7分钟前
老迟到的友桃完成签到 ,获得积分10
8分钟前
cdercder完成签到,获得积分0
8分钟前
xiaowangwang完成签到 ,获得积分10
9分钟前
小二郎应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
9分钟前
zyjsunye完成签到 ,获得积分10
10分钟前
聪慧的怀绿完成签到,获得积分10
10分钟前
11分钟前
HHM发布了新的文献求助10
11分钟前
11分钟前
11分钟前
HHM发布了新的文献求助10
11分钟前
shhoing应助科研通管家采纳,获得10
11分钟前
Arthur完成签到,获得积分10
12分钟前
一天完成签到 ,获得积分10
12分钟前
Balance Man完成签到 ,获得积分0
12分钟前
bing完成签到,获得积分10
13分钟前
bing发布了新的文献求助10
13分钟前
nick完成签到,获得积分10
13分钟前
科研通AI6应助科研通管家采纳,获得10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561600
求助须知:如何正确求助?哪些是违规求助? 4646663
关于积分的说明 14678807
捐赠科研通 4588007
什么是DOI,文献DOI怎么找? 2517273
邀请新用户注册赠送积分活动 1490570
关于科研通互助平台的介绍 1461617