Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:945
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助派123采纳,获得10
2秒前
完美世界应助一颗竹笋采纳,获得10
2秒前
FU完成签到,获得积分20
3秒前
4秒前
4秒前
韩浩男发布了新的文献求助10
4秒前
酷炫风华完成签到 ,获得积分10
6秒前
CodeCraft应助刻苦大门采纳,获得10
6秒前
7秒前
mumumu完成签到,获得积分10
7秒前
海岸完成签到,获得积分10
8秒前
一一发布了新的文献求助30
10秒前
绾绾完成签到 ,获得积分10
11秒前
007完成签到,获得积分10
12秒前
cindy完成签到 ,获得积分10
12秒前
wml应助Cyz采纳,获得10
13秒前
15秒前
斯文败类应助胡拉拉采纳,获得10
16秒前
Duke_ethan完成签到,获得积分10
17秒前
yang完成签到 ,获得积分10
17秒前
17秒前
17秒前
joe发布了新的文献求助10
18秒前
bkagyin应助xx采纳,获得10
18秒前
大个应助老干部采纳,获得10
19秒前
hymmm完成签到,获得积分10
19秒前
19秒前
21秒前
Return应助悄悄采纳,获得10
22秒前
梅雨季来信完成签到,获得积分10
22秒前
A晨发布了新的文献求助10
22秒前
yyyy发布了新的文献求助30
22秒前
23秒前
打打应助cwj采纳,获得10
23秒前
26秒前
QQ完成签到 ,获得积分10
27秒前
对掏大王发布了新的文献求助10
27秒前
赘婿应助走不开不快乐采纳,获得10
28秒前
外向蜡烛完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700