Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:945
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
liviawong完成签到,获得积分10
1秒前
嘻嘻完成签到,获得积分10
1秒前
打打应助健康的犀牛采纳,获得10
1秒前
英姑应助SANDY采纳,获得10
1秒前
Jasper应助和谐谷蕊采纳,获得10
2秒前
迅捷完成签到 ,获得积分10
2秒前
飞快的大白菜真实的钥匙完成签到,获得积分10
2秒前
2秒前
3秒前
喜悦晓灵完成签到,获得积分10
3秒前
外向从灵发布了新的文献求助10
3秒前
jgh完成签到 ,获得积分10
3秒前
搜集达人应助zlh采纳,获得10
3秒前
4秒前
蚂蚁Y嘿发布了新的文献求助10
4秒前
4秒前
三三得九完成签到 ,获得积分10
4秒前
甜甜的静柏完成签到 ,获得积分10
4秒前
5秒前
石武完成签到,获得积分10
5秒前
斯文败类应助Cmiudz采纳,获得10
5秒前
Yuan完成签到,获得积分10
6秒前
6秒前
6秒前
科研通AI2S应助江阳宏采纳,获得10
7秒前
7秒前
淡淡的雪发布了新的文献求助10
7秒前
pbj发布了新的文献求助10
8秒前
8秒前
8秒前
万能图书馆应助东晓采纳,获得10
8秒前
9秒前
程昌盛发布了新的文献求助10
9秒前
abcdefg发布了新的文献求助10
9秒前
外向从灵完成签到,获得积分20
10秒前
10秒前
zzz完成签到,获得积分10
10秒前
Max完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388