Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:637
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanyuee完成签到,获得积分10
刚刚
2秒前
Nemo发布了新的文献求助10
2秒前
2秒前
LaLaC完成签到,获得积分10
4秒前
4秒前
三金完成签到,获得积分10
6秒前
忆夏应助鳗鱼邪欢采纳,获得10
6秒前
w。发布了新的文献求助10
7秒前
joanna完成签到,获得积分10
7秒前
nanananan发布了新的文献求助10
7秒前
8秒前
独特绿蓉发布了新的文献求助10
8秒前
Gakay发布了新的文献求助10
8秒前
科研小驴发布了新的文献求助10
9秒前
111111完成签到,获得积分10
9秒前
9秒前
army77完成签到,获得积分10
11秒前
科研通AI2S应助after采纳,获得10
12秒前
深情安青应助George Will采纳,获得10
13秒前
sixlla发布了新的文献求助10
14秒前
天高任鸟飞完成签到,获得积分10
16秒前
Orange应助dang采纳,获得30
17秒前
18秒前
CipherSage应助鱿鱼阿章采纳,获得10
18秒前
19秒前
Jasper应助科研通管家采纳,获得30
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
SHENJING发布了新的文献求助10
19秒前
jia应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
HEIKU应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
共享精神应助科研通管家采纳,获得10
20秒前
20秒前
巴拉巴拉应助Gakay采纳,获得20
20秒前
20秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207432
求助须知:如何正确求助?哪些是违规求助? 2856761
关于积分的说明 8107137
捐赠科研通 2522079
什么是DOI,文献DOI怎么找? 1355350
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613478