Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:829
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
mm发布了新的文献求助10
1秒前
六六完成签到,获得积分20
1秒前
阿拉完成签到 ,获得积分10
1秒前
兔兔酱完成签到,获得积分10
1秒前
神经网络模型完成签到,获得积分10
2秒前
求助人员发布了新的文献求助10
2秒前
专注钢笔发布了新的文献求助10
2秒前
小猪完成签到,获得积分10
2秒前
111关闭了111文献求助
3秒前
3秒前
5555完成签到,获得积分10
3秒前
4秒前
YZ完成签到,获得积分10
4秒前
5秒前
sai完成签到,获得积分10
6秒前
Kinn完成签到,获得积分10
6秒前
成就的大米完成签到,获得积分10
7秒前
hzhniubility完成签到,获得积分10
7秒前
jy完成签到,获得积分10
8秒前
哈基米完成签到,获得积分0
8秒前
mm完成签到,获得积分10
9秒前
Hmbb发布了新的文献求助10
9秒前
sanages完成签到,获得积分10
10秒前
mxm完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
生活不是电影完成签到,获得积分10
11秒前
Wjh123456完成签到,获得积分10
12秒前
清欢完成签到,获得积分10
12秒前
应急食品完成签到,获得积分10
13秒前
O-M175完成签到,获得积分10
13秒前
春祭完成签到,获得积分10
13秒前
Hmbb完成签到,获得积分10
14秒前
14秒前
大圈圈完成签到,获得积分10
15秒前
15秒前
Elaine完成签到,获得积分10
15秒前
徐柯完成签到,获得积分10
16秒前
16秒前
17秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626