Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:829
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ajin发布了新的文献求助10
1秒前
布小丁发布了新的文献求助10
2秒前
完美世界应助Sev采纳,获得10
2秒前
科研通AI6应助淡淡一凤采纳,获得10
3秒前
大大大长腿完成签到,获得积分10
4秒前
taotao完成签到,获得积分10
5秒前
Hello完成签到,获得积分10
5秒前
6秒前
6秒前
泡泡发布了新的文献求助10
6秒前
7秒前
锦12138发布了新的文献求助10
8秒前
8秒前
我是老大应助哈哈哈采纳,获得10
8秒前
1351567822应助miemie66采纳,获得80
8秒前
毕晓旋发布了新的文献求助10
10秒前
亚七完成签到,获得积分10
10秒前
johnzsin发布了新的文献求助10
11秒前
Kkkkk发布了新的文献求助10
11秒前
12秒前
余了关注了科研通微信公众号
12秒前
XXXXX发布了新的文献求助30
13秒前
冯志华完成签到,获得积分10
13秒前
刘鸿雁完成签到 ,获得积分10
14秒前
14秒前
脑洞疼应助小白狗采纳,获得20
14秒前
14秒前
15秒前
苦行僧发布了新的文献求助10
15秒前
15秒前
周淡念完成签到,获得积分10
17秒前
orixero应助贪玩的机器猫采纳,获得10
17秒前
桐桐应助winkink采纳,获得10
17秒前
清风伴夜亭完成签到,获得积分10
17秒前
DL发布了新的文献求助10
18秒前
我是老大应助冯志华采纳,获得10
18秒前
Wayne发布了新的文献求助10
19秒前
快乐仙知发布了新的文献求助10
19秒前
20秒前
北部完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320977
求助须知:如何正确求助?哪些是违规求助? 4462749
关于积分的说明 13887609
捐赠科研通 4353801
什么是DOI,文献DOI怎么找? 2391340
邀请新用户注册赠送积分活动 1385010
关于科研通互助平台的介绍 1354802