已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:365: 113028-113028 被引量:829
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dkjg完成签到 ,获得积分10
刚刚
2秒前
li完成签到,获得积分10
2秒前
想飞的小猴子完成签到,获得积分10
3秒前
yziy发布了新的文献求助10
3秒前
嘿嘿呼完成签到,获得积分20
5秒前
今后应助陆旻采纳,获得10
5秒前
5秒前
ww完成签到,获得积分20
6秒前
theo完成签到,获得积分10
7秒前
小小鹅发布了新的文献求助10
7秒前
movoandy发布了新的文献求助10
7秒前
科研通AI6应助wt采纳,获得10
8秒前
9秒前
燕尔蓝发布了新的文献求助10
9秒前
9秒前
渔渔完成签到 ,获得积分10
10秒前
11秒前
嘛吉发布了新的文献求助10
13秒前
活泼的若血完成签到 ,获得积分10
15秒前
学术小白w完成签到,获得积分10
16秒前
tangtang关注了科研通微信公众号
16秒前
17秒前
科研通AI6应助凶狠的源智采纳,获得10
18秒前
20秒前
传奇3应助hygge采纳,获得10
22秒前
22秒前
23秒前
23秒前
caoyonggang发布了新的文献求助10
24秒前
馆长给开心的访卉的求助进行了留言
24秒前
puppy发布了新的文献求助10
26秒前
科研通AI6应助嘛吉采纳,获得10
28秒前
28秒前
科研通AI6应助优雅的帅哥采纳,获得10
28秒前
小小牛马完成签到 ,获得积分10
30秒前
30秒前
31秒前
陈小白完成签到,获得积分10
31秒前
32秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522