Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:365: 113028-113028 被引量:945
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
今后应助奥里给医学生采纳,获得10
4秒前
魔幻的妖丽完成签到 ,获得积分0
5秒前
shuan完成签到,获得积分10
9秒前
吴晨曦完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
13秒前
落叶完成签到 ,获得积分0
14秒前
研友_Zrlk7L完成签到,获得积分10
15秒前
丽莫莫完成签到,获得积分10
20秒前
丁丁发布了新的文献求助10
20秒前
安静严青完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
27秒前
科科通通完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
大猫不吃鱼完成签到,获得积分10
29秒前
30秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
32秒前
草莓熊1215完成签到 ,获得积分10
33秒前
江湖完成签到,获得积分10
36秒前
东日完成签到,获得积分10
38秒前
sunnyqqz完成签到,获得积分10
39秒前
刚子完成签到 ,获得积分10
40秒前
葡紫明完成签到 ,获得积分10
40秒前
岁月如歌完成签到 ,获得积分0
42秒前
排骨年糕完成签到 ,获得积分10
43秒前
longmad完成签到,获得积分10
44秒前
小小咸鱼完成签到 ,获得积分10
45秒前
陈富贵完成签到 ,获得积分10
47秒前
魄魄olm发布了新的文献求助10
48秒前
小男孩完成签到,获得积分10
49秒前
王皮皮完成签到 ,获得积分10
49秒前
繁荣的安白完成签到 ,获得积分10
50秒前
qiaorankongling完成签到 ,获得积分10
50秒前
50秒前
53秒前
七七完成签到 ,获得积分10
53秒前
量子星尘发布了新的文献求助10
55秒前
量子星尘发布了新的文献求助10
56秒前
Ao_Jiang完成签到,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986