Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

守恒定律 人工神经网络 非线性系统 标量(数学) Korteweg–de Vries方程 应用数学 数学 反问题 数学优化 数学分析 计算机科学 物理 人工智能 几何学 量子力学
作者
Ameya D. Jagtap,Ehsan Kharazmi,George Em Karniadakis
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:365: 113028-113028 被引量:829
标识
DOI:10.1016/j.cma.2020.113028
摘要

We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
酷波er应助djbj2022采纳,获得10
1秒前
Umair发布了新的文献求助10
1秒前
3秒前
3秒前
3秒前
4秒前
hana发布了新的文献求助10
6秒前
科研通AI6应助搞怪的幻梅采纳,获得10
6秒前
8秒前
黄小花完成签到,获得积分10
8秒前
8秒前
沫崽完成签到 ,获得积分10
8秒前
藜誌发布了新的文献求助10
9秒前
科研通AI5应助pignai采纳,获得10
9秒前
充电宝应助望山云雾采纳,获得10
10秒前
Umair完成签到,获得积分10
10秒前
一路硕博发布了新的文献求助10
11秒前
12秒前
djbj2022发布了新的文献求助10
13秒前
testmanfuxk完成签到,获得积分10
13秒前
15秒前
沐风完成签到 ,获得积分10
15秒前
hana完成签到,获得积分20
16秒前
HopeLee完成签到,获得积分10
16秒前
ss完成签到,获得积分10
17秒前
njhuxs完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
21秒前
JamesPei应助hana采纳,获得10
21秒前
CYQ完成签到,获得积分10
22秒前
幺幺咔完成签到 ,获得积分10
23秒前
kingmp2完成签到 ,获得积分10
24秒前
24秒前
24秒前
25秒前
望山云雾发布了新的文献求助10
25秒前
25秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961436
求助须知:如何正确求助?哪些是违规求助? 4221802
关于积分的说明 13148395
捐赠科研通 4005700
什么是DOI,文献DOI怎么找? 2192424
邀请新用户注册赠送积分活动 1206251
关于科研通互助平台的介绍 1117713