因果推理
推论
因果关系
计算机科学
咒语
口译(哲学)
基准推理
因果关系(物理学)
因果模型
回归
观察研究
计量经济学
频数推理
人工智能
统计
数学
贝叶斯推理
认识论
贝叶斯概率
物理
哲学
程序设计语言
量子力学
神学
作者
Karsten Lübke,Matthias Gehrke,Jörg Horst,Gero Szepannek
标识
DOI:10.1080/10691898.2020.1752859
摘要
Basic knowledge of ideas of causal inference can help students to think beyond data, that is, to think more clearly about the data generating process. Especially for (maybe big) observational data, qualitative assumptions are important for the conclusions drawn and interpretation of the quantitative results. Concepts of causal inference can also help to overcome the mantra "Correlation does not imply Causation." To motivate and introduce causal inference in introductory statistics or data science courses, we use simulated data and simple linear regression to show the effects of confounding and when one should or should not adjust for covariables.
科研通智能强力驱动
Strongly Powered by AbleSci AI