Independently Interpretable Lasso for Generalized Linear Models

可解释性 正规化(语言学) 极小极大 过度拟合 数学 线性回归 计算机科学 Lasso(编程语言) 线性模型 人工智能 算法 应用数学 数学优化 机器学习 人工神经网络 万维网
作者
Masashi Takada,Taiji Suzuki,Hironori Fujisawa
出处
期刊:Neural Computation [MIT Press]
卷期号:32 (6): 1168-1221 被引量:1
标识
DOI:10.1162/neco_a_01279
摘要

Sparse regularization such as [Formula: see text] regularization is a quite powerful and widely used strategy for high-dimensional learning problems. The effectiveness of sparse regularization has been supported practically and theoretically by several studies. However, one of the biggest issues in sparse regularization is that its performance is quite sensitive to correlations between features. Ordinary [Formula: see text] regularization selects variables correlated with each other under weak regularizations, which results in deterioration of not only its estimation error but also interpretability. In this letter, we propose a new regularization method, independently interpretable lasso (IILasso), for generalized linear models. Our proposed regularizer suppresses selecting correlated variables, so that each active variable affects the response independently in the model. Hence, we can interpret regression coefficients intuitively, and the performance is also improved by avoiding overfitting. We analyze the theoretical property of the IILasso and show that the proposed method is advantageous for its sign recovery and achieves almost minimax optimal convergence rate. Synthetic and real data analyses also indicate the effectiveness of the IILasso.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
陈雨发布了新的文献求助10
1秒前
123完成签到,获得积分10
3秒前
风起发布了新的文献求助10
3秒前
xiaoxin发布了新的文献求助10
4秒前
su发布了新的文献求助10
6秒前
回忆敌不过尿意完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
9秒前
Yuzya完成签到,获得积分10
9秒前
传奇3应助xiaoxin采纳,获得10
10秒前
11秒前
是我不得开心妍完成签到 ,获得积分10
11秒前
13秒前
AJY发布了新的文献求助10
13秒前
14秒前
14秒前
希达通完成签到 ,获得积分10
16秒前
17秒前
18秒前
聪慧的幼旋完成签到,获得积分20
19秒前
pluto应助yzj采纳,获得10
19秒前
19秒前
卷卷发布了新的文献求助10
22秒前
阉太狼完成签到,获得积分10
22秒前
热心的怀蝶完成签到,获得积分10
23秒前
万能图书馆应助wbz采纳,获得10
23秒前
Jingyi发布了新的文献求助30
24秒前
亮亮来咯发布了新的文献求助10
25秒前
Donna发布了新的文献求助10
26秒前
32秒前
浮游应助赵赵采纳,获得10
32秒前
科研通AI2S应助不可思议采纳,获得10
34秒前
辉哥完成签到,获得积分10
34秒前
传奇3应助畅快远山采纳,获得30
36秒前
完美世界应助伯牙采纳,获得10
36秒前
虚幻的梦桃完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299184
求助须知:如何正确求助?哪些是违规求助? 4447424
关于积分的说明 13842647
捐赠科研通 4333048
什么是DOI,文献DOI怎么找? 2378492
邀请新用户注册赠送积分活动 1373800
关于科研通互助平台的介绍 1339331