Independently Interpretable Lasso for Generalized Linear Models

可解释性 正规化(语言学) 极小极大 过度拟合 数学 线性回归 计算机科学 Lasso(编程语言) 线性模型 人工智能 算法 应用数学 数学优化 机器学习 人工神经网络 万维网
作者
Masashi Takada,Taiji Suzuki,Hironori Fujisawa
出处
期刊:Neural Computation [MIT Press]
卷期号:32 (6): 1168-1221 被引量:1
标识
DOI:10.1162/neco_a_01279
摘要

Sparse regularization such as [Formula: see text] regularization is a quite powerful and widely used strategy for high-dimensional learning problems. The effectiveness of sparse regularization has been supported practically and theoretically by several studies. However, one of the biggest issues in sparse regularization is that its performance is quite sensitive to correlations between features. Ordinary [Formula: see text] regularization selects variables correlated with each other under weak regularizations, which results in deterioration of not only its estimation error but also interpretability. In this letter, we propose a new regularization method, independently interpretable lasso (IILasso), for generalized linear models. Our proposed regularizer suppresses selecting correlated variables, so that each active variable affects the response independently in the model. Hence, we can interpret regression coefficients intuitively, and the performance is also improved by avoiding overfitting. We analyze the theoretical property of the IILasso and show that the proposed method is advantageous for its sign recovery and achieves almost minimax optimal convergence rate. Synthetic and real data analyses also indicate the effectiveness of the IILasso.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cancan完成签到,获得积分10
1秒前
zhuangbaobao发布了新的文献求助10
4秒前
郭6666发布了新的文献求助10
5秒前
完美世界应助留胡子的火采纳,获得10
10秒前
脑洞疼应助郭6666采纳,获得10
10秒前
公冶愚志完成签到,获得积分10
13秒前
威武的皮卡丘完成签到,获得积分10
19秒前
19秒前
19秒前
大龙哥886应助ri_290采纳,获得10
20秒前
sevenhill应助Devastating采纳,获得10
22秒前
22秒前
今后应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得30
23秒前
拼搏应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得20
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
小新应助科研通管家采纳,获得10
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
鬼切关注了科研通微信公众号
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
无极微光应助科研通管家采纳,获得20
23秒前
scaler完成签到,获得积分10
24秒前
25秒前
xinbowey发布了新的文献求助10
25秒前
xiao完成签到 ,获得积分10
27秒前
28秒前
默默早晨完成签到 ,获得积分10
29秒前
yang发布了新的文献求助10
31秒前
科研通AI6应助Jodie采纳,获得10
33秒前
二次元喵酱完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555