已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Independently Interpretable Lasso for Generalized Linear Models

可解释性 正规化(语言学) 极小极大 过度拟合 数学 线性回归 计算机科学 Lasso(编程语言) 线性模型 人工智能 算法 应用数学 数学优化 机器学习 人工神经网络 万维网
作者
Masashi Takada,Taiji Suzuki,Hironori Fujisawa
出处
期刊:Neural Computation [MIT Press]
卷期号:32 (6): 1168-1221 被引量:1
标识
DOI:10.1162/neco_a_01279
摘要

Sparse regularization such as [Formula: see text] regularization is a quite powerful and widely used strategy for high-dimensional learning problems. The effectiveness of sparse regularization has been supported practically and theoretically by several studies. However, one of the biggest issues in sparse regularization is that its performance is quite sensitive to correlations between features. Ordinary [Formula: see text] regularization selects variables correlated with each other under weak regularizations, which results in deterioration of not only its estimation error but also interpretability. In this letter, we propose a new regularization method, independently interpretable lasso (IILasso), for generalized linear models. Our proposed regularizer suppresses selecting correlated variables, so that each active variable affects the response independently in the model. Hence, we can interpret regression coefficients intuitively, and the performance is also improved by avoiding overfitting. We analyze the theoretical property of the IILasso and show that the proposed method is advantageous for its sign recovery and achieves almost minimax optimal convergence rate. Synthetic and real data analyses also indicate the effectiveness of the IILasso.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Bai采纳,获得10
3秒前
hao发布了新的文献求助10
3秒前
万能图书馆应助钙钛矿狗采纳,获得10
4秒前
刘刘完成签到 ,获得积分10
9秒前
10秒前
陈chen发布了新的文献求助10
10秒前
想毕业的猫猫完成签到,获得积分10
11秒前
yyds应助hao采纳,获得50
12秒前
wanci应助我又可以了采纳,获得30
13秒前
orixero应助XLT采纳,获得10
14秒前
拼搏映菡发布了新的文献求助10
16秒前
16秒前
19秒前
cyt9999发布了新的文献求助10
19秒前
hehe发布了新的文献求助10
19秒前
20秒前
科研通AI6应助janie采纳,获得10
20秒前
华仔应助janie采纳,获得10
20秒前
22秒前
Liz发布了新的文献求助10
24秒前
27秒前
abab完成签到 ,获得积分10
31秒前
31秒前
31秒前
安详的海风完成签到,获得积分10
33秒前
35秒前
天天快乐应助科研通管家采纳,获得30
36秒前
36秒前
ding应助科研通管家采纳,获得10
36秒前
Hello应助科研通管家采纳,获得10
36秒前
情怀应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
Ava应助科研通管家采纳,获得10
36秒前
123456发布了新的文献求助10
36秒前
36秒前
深情安青应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
37秒前
37秒前
FashionBoy应助科研通管家采纳,获得10
37秒前
酷波er应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696