Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit

医学 重症监护室 置信区间 接收机工作特性 曲线下面积 流血 重症监护 急诊医学 重症监护医学 机器学习 内科学 外科 计算机科学
作者
Farah Deshmukh,Shamel S. Merchant
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:115 (10): 1657-1668 被引量:61
标识
DOI:10.14309/ajg.0000000000000632
摘要

INTRODUCTION: Acute gastrointestinal (GI) bleed is a common reason for hospitalization with 2%–10% risk of mortality. In this study, we developed a machine learning (ML) model to calculate the risk of mortality in intensive care unit patients admitted for GI bleed and compared it with APACHE IVa risk score. We used explainable ML methods to provide insight into the model's prediction and outcome. METHODS: We analyzed the patient data in the Electronic Intensive Care Unit Collaborative Research Database and extracted data for 5,691 patients (mean age = 67.4 years; 61% men) admitted with GI bleed. The data were used in training a ML model to identify patients who died in the intensive care unit. We compared the predictive performance of the ML model with the APACHE IVa risk score. Performance was measured by area under receiver operating characteristic curve (AUC) analysis. This study also used explainable ML methods to provide insights into the model's outcome or prediction using the SHAP (SHapley Additive exPlanations) method. RESULTS: The ML model performed better than the APACHE IVa risk score in correctly classifying the low-risk patients. The ML model had a specificity of 27% (95% confidence interval [CI]: 25–36) at a sensitivity of 100% compared with the APACHE IVa score, which had a specificity of 4% (95% CI: 3–31) at a sensitivity of 100%. The model identified patients who died with an AUC of 0.85 (95% CI: 0.80–0.90) in the internal validation set, whereas the APACHE IVa clinical scoring systems identified patients who died with AUC values of 0.80 (95% CI: 0.73–0.86) with P value <0.001. DISCUSSION: We developed a ML model that predicts the mortality in patients with GI bleed with a greater accuracy than the current scoring system. By making the ML model explainable, clinicians would be able to better understand the reasoning behind the outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿宝发布了新的文献求助10
刚刚
深情安青应助通~采纳,获得10
刚刚
Percy完成签到 ,获得积分10
刚刚
xiuxiu_27发布了新的文献求助10
1秒前
顾矜应助千里采纳,获得10
1秒前
神勇的雅香应助妮儿采纳,获得10
1秒前
qi完成签到,获得积分10
2秒前
哒哒发布了新的文献求助10
2秒前
知行完成签到,获得积分10
2秒前
2秒前
3秒前
Yenom发布了新的文献求助10
3秒前
4秒前
滴滴发布了新的文献求助10
5秒前
心灵美发卡完成签到,获得积分10
5秒前
科目三应助浩浩大人采纳,获得10
6秒前
考虑考虑完成签到,获得积分10
6秒前
彪壮的刺猬完成签到,获得积分10
7秒前
杏花饼完成签到,获得积分10
7秒前
Ll发布了新的文献求助10
7秒前
7秒前
汉堡包应助啊娴仔采纳,获得10
8秒前
8秒前
珂伟完成签到,获得积分10
8秒前
鲜艳的帅哥完成签到,获得积分10
9秒前
wkjsdsg完成签到,获得积分10
9秒前
大七完成签到 ,获得积分10
9秒前
9秒前
jogrgr发布了新的文献求助10
10秒前
lll发布了新的文献求助10
11秒前
生气的鸡蛋完成签到,获得积分10
11秒前
qi发布了新的文献求助10
11秒前
zino发布了新的文献求助10
12秒前
12秒前
12秒前
stt发布了新的文献求助10
13秒前
小蘑菇应助杏花饼采纳,获得10
13秒前
海棠yiyi发布了新的文献求助50
13秒前
camellia完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759