亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit

医学 重症监护室 置信区间 接收机工作特性 曲线下面积 流血 重症监护 急诊医学 重症监护医学 机器学习 内科学 外科 计算机科学
作者
Farah Deshmukh,Shamel S. Merchant
出处
期刊:The American Journal of Gastroenterology [American College of Gastroenterology]
卷期号:115 (10): 1657-1668 被引量:90
标识
DOI:10.14309/ajg.0000000000000632
摘要

INTRODUCTION: Acute gastrointestinal (GI) bleed is a common reason for hospitalization with 2%–10% risk of mortality. In this study, we developed a machine learning (ML) model to calculate the risk of mortality in intensive care unit patients admitted for GI bleed and compared it with APACHE IVa risk score. We used explainable ML methods to provide insight into the model's prediction and outcome. METHODS: We analyzed the patient data in the Electronic Intensive Care Unit Collaborative Research Database and extracted data for 5,691 patients (mean age = 67.4 years; 61% men) admitted with GI bleed. The data were used in training a ML model to identify patients who died in the intensive care unit. We compared the predictive performance of the ML model with the APACHE IVa risk score. Performance was measured by area under receiver operating characteristic curve (AUC) analysis. This study also used explainable ML methods to provide insights into the model's outcome or prediction using the SHAP (SHapley Additive exPlanations) method. RESULTS: The ML model performed better than the APACHE IVa risk score in correctly classifying the low-risk patients. The ML model had a specificity of 27% (95% confidence interval [CI]: 25–36) at a sensitivity of 100% compared with the APACHE IVa score, which had a specificity of 4% (95% CI: 3–31) at a sensitivity of 100%. The model identified patients who died with an AUC of 0.85 (95% CI: 0.80–0.90) in the internal validation set, whereas the APACHE IVa clinical scoring systems identified patients who died with AUC values of 0.80 (95% CI: 0.73–0.86) with P value <0.001. DISCUSSION: We developed a ML model that predicts the mortality in patients with GI bleed with a greater accuracy than the current scoring system. By making the ML model explainable, clinicians would be able to better understand the reasoning behind the outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溪灵发布了新的文献求助20
2秒前
啊啊啊完成签到 ,获得积分10
3秒前
10秒前
玉玉完成签到 ,获得积分20
24秒前
量子星尘发布了新的文献求助10
26秒前
ttkx完成签到,获得积分10
29秒前
36秒前
杨光发布了新的文献求助10
40秒前
江流儿完成签到 ,获得积分10
47秒前
SciGPT应助杨光采纳,获得10
48秒前
57秒前
57秒前
lcw1998完成签到 ,获得积分10
59秒前
无限青槐发布了新的文献求助10
1分钟前
小蘑菇应助jinan采纳,获得10
1分钟前
溪灵完成签到,获得积分10
1分钟前
斯文败类应助shun采纳,获得10
1分钟前
阿俊完成签到 ,获得积分10
1分钟前
fandan完成签到 ,获得积分10
1分钟前
Eileen完成签到 ,获得积分0
1分钟前
香菜张完成签到,获得积分10
1分钟前
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助morena采纳,获得10
1分钟前
寻道图强完成签到,获得积分0
1分钟前
圈哥完成签到,获得积分10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
Ava应助无限青槐采纳,获得10
2分钟前
忧郁的火车完成签到,获得积分10
2分钟前
朝朝暮夕完成签到 ,获得积分10
2分钟前
闪闪的晓丝完成签到 ,获得积分10
2分钟前
酷波er应助观澜采纳,获得10
2分钟前
zqq完成签到,获得积分0
2分钟前
大个应助Ruby采纳,获得10
2分钟前
尘远知山静完成签到 ,获得积分10
2分钟前
bkagyin应助干羞花采纳,获得10
3分钟前
3分钟前
干羞花发布了新的文献求助10
3分钟前
3分钟前
JamesPei应助star采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622199
求助须知:如何正确求助?哪些是违规求助? 4707132
关于积分的说明 14938831
捐赠科研通 4769058
什么是DOI,文献DOI怎么找? 2552198
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475038