Explainable Machine Learning Model for Predicting GI Bleed Mortality in the Intensive Care Unit

医学 重症监护室 置信区间 接收机工作特性 曲线下面积 流血 重症监护 急诊医学 重症监护医学 机器学习 内科学 外科 计算机科学
作者
Farah Deshmukh,Shamel S. Merchant
出处
期刊:The American Journal of Gastroenterology [Lippincott Williams & Wilkins]
卷期号:115 (10): 1657-1668 被引量:70
标识
DOI:10.14309/ajg.0000000000000632
摘要

INTRODUCTION: Acute gastrointestinal (GI) bleed is a common reason for hospitalization with 2%–10% risk of mortality. In this study, we developed a machine learning (ML) model to calculate the risk of mortality in intensive care unit patients admitted for GI bleed and compared it with APACHE IVa risk score. We used explainable ML methods to provide insight into the model's prediction and outcome. METHODS: We analyzed the patient data in the Electronic Intensive Care Unit Collaborative Research Database and extracted data for 5,691 patients (mean age = 67.4 years; 61% men) admitted with GI bleed. The data were used in training a ML model to identify patients who died in the intensive care unit. We compared the predictive performance of the ML model with the APACHE IVa risk score. Performance was measured by area under receiver operating characteristic curve (AUC) analysis. This study also used explainable ML methods to provide insights into the model's outcome or prediction using the SHAP (SHapley Additive exPlanations) method. RESULTS: The ML model performed better than the APACHE IVa risk score in correctly classifying the low-risk patients. The ML model had a specificity of 27% (95% confidence interval [CI]: 25–36) at a sensitivity of 100% compared with the APACHE IVa score, which had a specificity of 4% (95% CI: 3–31) at a sensitivity of 100%. The model identified patients who died with an AUC of 0.85 (95% CI: 0.80–0.90) in the internal validation set, whereas the APACHE IVa clinical scoring systems identified patients who died with AUC values of 0.80 (95% CI: 0.73–0.86) with P value <0.001. DISCUSSION: We developed a ML model that predicts the mortality in patients with GI bleed with a greater accuracy than the current scoring system. By making the ML model explainable, clinicians would be able to better understand the reasoning behind the outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ED应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
陌疑应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
星辰大海应助跳跳虎采纳,获得10
2秒前
嗯嗯完成签到 ,获得积分20
4秒前
山野完成签到 ,获得积分10
5秒前
6秒前
鹅1发布了新的文献求助10
6秒前
大乐完成签到 ,获得积分10
7秒前
9秒前
9秒前
9秒前
10秒前
qiang发布了新的文献求助10
10秒前
Notdodead关注了科研通微信公众号
11秒前
星辰大海应助一直采纳,获得10
12秒前
牛牛眉目发布了新的文献求助10
13秒前
xliiii发布了新的文献求助10
15秒前
鹅1完成签到,获得积分10
16秒前
montecount完成签到,获得积分10
17秒前
坦率尔琴完成签到,获得积分10
17秒前
清爽电脑完成签到,获得积分10
19秒前
可爱的函函应助坦率尔琴采纳,获得10
20秒前
jiabu完成签到 ,获得积分10
21秒前
22秒前
SJAW完成签到,获得积分10
23秒前
往前走别回头完成签到,获得积分10
23秒前
CodeCraft应助qiang采纳,获得10
23秒前
开心的太清完成签到,获得积分10
26秒前
牛牛眉目发布了新的文献求助10
27秒前
潇洒的问夏完成签到,获得积分10
28秒前
扑火退羽完成签到,获得积分10
30秒前
jason完成签到,获得积分10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361