Real-Time Apple Detection System Using Embedded Systems With Hardware Accelerators: An Edge AI Application

计算机科学 帧速率 稳健性(进化) 人工智能 集合(抽象数据类型) 嵌入式系统 计算机硬件 实时计算 生物化学 基因 化学 程序设计语言
作者
Vittorio Mazzia,Aleem Khaliq,Francesco Salvetti,Marcello Chiaberge
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 9102-9114 被引量:171
标识
DOI:10.1109/access.2020.2964608
摘要

Real-time apple detection in orchards is one of the most effective ways of estimating apple yields, which helps in managing apple supplies more effectively. Traditional detection methods used highly computational machine learning algorithms with intensive hardware set up, which are not suitable for infield real-time apple detection due to their weight and power constraints. In this study, a real-time embedded solution inspired from "Edge AI" is proposed for apple detection with the implementation of YOLOv3-tiny algorithm on various embedded platforms such as Raspberry Pi 3 B+ in combination with Intel Movidius Neural Computing Stick (NCS), Nvidia's Jetson Nano and Jetson AGX Xavier. Data set for training were compiled using acquired images during field survey of apple orchard situated in the north region of Italy, and images used for testing were taken from widely used google data set by filtering out the images containing apples in different scenes to ensure the robustness of the algorithm. The proposed study adapts YOLOv3-tiny architecture to detect small objects. It shows the feasibility of deployment of the customized model on cheap and power-efficient embedded hardware without compromising mean average detection accuracy (83.64%) and achieved frame rate up to 30 fps even for the difficult scenarios such as overlapping apples, complex background, less exposure of apple due to leaves and branches. Furthermore, the proposed embedded solution can be deployed on the unmanned ground vehicles to detect, count, and measure the size of the apples in real-time to help the farmers and agronomists in their decision making and management skills.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shang发布了新的文献求助10
2秒前
科研通AI5应助君君采纳,获得20
2秒前
2秒前
英姑应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
香蕉觅云应助bofu采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得30
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
尊敬秋双完成签到 ,获得积分10
4秒前
4秒前
6秒前
kimon完成签到,获得积分10
6秒前
李健应助123采纳,获得30
7秒前
英勇的糖豆完成签到,获得积分10
8秒前
8秒前
冠心没有病完成签到,获得积分10
8秒前
8秒前
姜夔发布了新的文献求助10
9秒前
10秒前
11秒前
领导范儿应助wwqdd采纳,获得10
11秒前
123给123的求助进行了留言
13秒前
洛溪发布了新的文献求助10
13秒前
14秒前
超人会飞233完成签到,获得积分10
16秒前
wd发布了新的文献求助30
16秒前
ylyn发布了新的文献求助10
16秒前
英俊的铭应助aurevoir采纳,获得10
16秒前
17秒前
17秒前
高挑的迎波完成签到,获得积分10
18秒前
Rrr关闭了Rrr文献求助
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559805
求助须知:如何正确求助?哪些是违规求助? 3134281
关于积分的说明 9406327
捐赠科研通 2834314
什么是DOI,文献DOI怎么找? 1558059
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522