材料科学
降级(电信)
量子点
污染物
光电子学
电荷(物理)
能量(信号处理)
量子
纳米技术
工程物理
化学工程
电气工程
物理
量子力学
化学
工程类
有机化学
作者
Qiujin Shi,Miao Zhang,Zemin Zhang,Yunxia Li,Yang Qu,Zhanqi Liu,Jianlong Yang,Ming Xie,Weihua Han
出处
期刊:Nano Energy
[Elsevier]
日期:2020-03-01
卷期号:69: 104448-104448
被引量:53
标识
DOI:10.1016/j.nanoen.2020.104448
摘要
Despite the favorable absorption of BiVO4 to visible light, the photogenerated charges in BiVO4 are weak in catalysis and most of them were recombined before reaching the catalyst surface due to their low energy as well as poor separation and transfer capacities. In this work, we used piezo-potential generated in a strained ZnO nanorod to evaluate the photoelectrons energy and promote the charge separation and transfer in BiVO4 quantum dots. The BiVO4 quantum dots were decorated on the ZnO nanorod to construct a piezo-potential assisted photocatalyst. Our results indicated that the visible photodegradation rate of ZnO nanorod arrays with optimized BiVO4 quantum dots decoration was significantly improved in formaldehyde degrading under mechanical stimulation. The concentration of formaldehyde was decreased to ~0.2 ppm from 1 ppm in 1 h, which is ~2.5 times than that without piezo-potential assistance. The negative electric field generated in the ZnO nanorod when compressively strained was believed to have evaluated the conduction band of BiVO4 and thus the photoelectron energy. Moreover, the photoelectrons and holes were promptly driven to be transferred in the opposite direction before recombination by the piezoelectric field. These promotions lead to remarkably enhanced charge separation rate, which is directly responsible to the improved photocatalytic activity of the BiVO4 quantum dots.
科研通智能强力驱动
Strongly Powered by AbleSci AI