When Learning Joins Edge: Real-Time Proportional Computation Offloading via Deep Reinforcement Learning

计算机科学 强化学习 计算卸载 计算 边缘设备 加入 带宽(计算) 分布式计算 GSM演进的增强数据速率 服务器 边缘计算 人工智能 计算机网络 云计算 操作系统 算法 程序设计语言
作者
Ning Chen,Sheng Zhang,Zhuzhong Qian,Jie Wu,Sanglu Lu
标识
DOI:10.1109/icpads47876.2019.00066
摘要

Computation offloading makes sense to the interaction between users and compute-intensive applications. Current researches focused on deciding locally or remotely executing an application, but ignored the specific offloading proportion of application. A full offloading cannot make the best use of client and server resources. In this paper, we propose an innovative reinforcement learning (RL) method to solve the proportional computation problem. We consider a common offloading scenario with time-variant bandwidth and heterogeneous devices, and the device generates applications constantly. For each application, the client has to choose locally or remotely executing this application, and determines the proportion to be offloaded. We formalize the problem as a long-term optimization problem, and then propose a RL-based algorithm to solve it. The basic idea is to estimate the benefit of posible decisions, of wihch the decision with the maximum benefit is selected. Instead of adopting the original Deep Q Network (DQN), we propose Advanced DQN (ADQN) by adding Priority Buffer Mechanism and Expert Buffer Mechanism, which improves the utilization of samples and overcomes the cold start problem, respectively. The experimental results show ADQN's high feasibility and efficiency compared with several traditional policies, such as None Offloading Policy, Random Offloading Policy, Link Capacity Optimal Policy, and Computing Capability Optimal Policy. At last, we analyse the effect of expert buffer size and learning rate on ADQN's performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
胡萝卜发布了新的文献求助10
1秒前
1秒前
今后应助JamesTYD采纳,获得10
2秒前
蓝色123完成签到,获得积分10
3秒前
3秒前
3秒前
王志威发布了新的文献求助10
5秒前
越野完成签到 ,获得积分10
6秒前
冰糕发布了新的文献求助20
7秒前
8秒前
妞妞完成签到,获得积分10
8秒前
岩岩岩完成签到,获得积分10
8秒前
log完成签到,获得积分10
8秒前
9秒前
10秒前
12秒前
xiaoxiao发布了新的文献求助10
12秒前
Ava应助痴笑采纳,获得20
12秒前
cbf发布了新的文献求助10
13秒前
ting发布了新的文献求助10
14秒前
qiqi完成签到,获得积分10
15秒前
充电宝应助还单身的语薇采纳,获得10
15秒前
17秒前
JamesTYD发布了新的文献求助10
19秒前
Mystic完成签到,获得积分10
20秒前
20秒前
小菜完成签到 ,获得积分10
21秒前
Mystic发布了新的文献求助10
22秒前
情怀应助菠萝采纳,获得10
23秒前
24秒前
25秒前
冰糕完成签到,获得积分20
26秒前
搜集达人应助GSD采纳,获得10
29秒前
梅林公发布了新的文献求助10
30秒前
Akim应助王志威采纳,获得10
31秒前
33秒前
动人的向松完成签到 ,获得积分10
35秒前
35秒前
ting完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003