Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery

相间 电解质 材料科学 离子 锂(药物) 二次离子质谱法 双层(生物学) 纳米技术 图层(电子) 化学物理 分析化学(期刊) 化学工程 电极 化学 色谱法 物理化学 有机化学 工程类 内分泌学 生物 医学 遗传学
作者
Yufan Zhou,Mao Su,Xiaofei Yu,Yanyan Zhang,Jun-Gang Wang,Xiaodi Ren,Ruiguo Cao,Wu Xu,Donald R. Baer,Yingge Du,Oleg Borodin,Yanting Wang,Xuelin Wang,Kang Xu,Zhijie Xu,Chongmin Wang,Zihua Zhu
出处
期刊:Nature Nanotechnology [Springer Nature]
卷期号:15 (3): 224-230 被引量:423
标识
DOI:10.1038/s41565-019-0618-4
摘要

The solid–electrolyte interphase (SEI) dictates the performance of most batteries, but the understanding of its chemistry and structure is limited by the lack of in situ experimental tools. In this work, we present a dynamic picture of the SEI formation in lithium-ion batteries using in operando liquid secondary ion mass spectrometry in combination with molecular dynamics simulations. We find that before any interphasial chemistry occurs (during the initial charging), an electric double layer forms at the electrode/electrolyte interface due to the self-assembly of solvent molecules. The formation of the double layer is directed by Li+ and the electrode surface potential. The structure of this double layer predicts the eventual interphasial chemistry; in particular, the negatively charged electrode surface repels salt anions from the inner layer and results in an inner SEI that is thin, dense and inorganic in nature. It is this dense layer that is responsible for conducting Li+ and insulating electrons, the main functions of the SEI. An electrolyte-permeable and organic-rich outer layer appears after the formation of the inner layer. In the presence of a highly concentrated, fluoride-rich electrolyte, the inner SEI layer has an elevated concentration of LiF due to the presence of anions in the double layer. These real-time nanoscale observations will be helpful in engineering better interphases for future batteries. An operando mass spectrometry technique, along with molecular dynamics simulations, unveils the evolution of the solid–electrolyte interphase chemistry and structure in lithium-ion batteries during the first cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅特卡夫完成签到,获得积分10
1秒前
dayday完成签到,获得积分10
1秒前
1秒前
科研王子完成签到 ,获得积分10
2秒前
sunyz应助77采纳,获得50
6秒前
Sofia完成签到 ,获得积分0
6秒前
量子星尘发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
14秒前
shouz完成签到,获得积分10
14秒前
田様应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得30
14秒前
shtatbf应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
15秒前
Spring完成签到,获得积分10
17秒前
Wang完成签到,获得积分10
20秒前
晚霞完成签到 ,获得积分10
20秒前
laihama完成签到,获得积分10
24秒前
天真南松完成签到,获得积分10
24秒前
IV完成签到 ,获得积分10
25秒前
Uu完成签到 ,获得积分10
27秒前
MrChew完成签到 ,获得积分10
27秒前
单身的溪流完成签到,获得积分10
27秒前
潇潇完成签到 ,获得积分10
27秒前
量子星尘发布了新的文献求助10
29秒前
大力的诗蕾完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
Aeeeeeeon完成签到 ,获得积分10
35秒前
PQ完成签到,获得积分10
37秒前
39秒前
keyanxinshou完成签到 ,获得积分10
39秒前
von完成签到,获得积分10
39秒前
王平安完成签到 ,获得积分10
41秒前
沫柠完成签到 ,获得积分10
41秒前
甜蜜冷风完成签到,获得积分10
42秒前
怀南完成签到 ,获得积分10
42秒前
计划逃跑完成签到 ,获得积分10
44秒前
朴素海亦完成签到 ,获得积分10
47秒前
jixuchance完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858