Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery

相间 电解质 材料科学 离子 锂(药物) 二次离子质谱法 双层(生物学) 纳米技术 图层(电子) 化学物理 分析化学(期刊) 化学工程 电极 化学 色谱法 物理化学 有机化学 工程类 内分泌学 生物 医学 遗传学
作者
Yufan Zhou,Mao Su,Xiaofei Yu,Yanyan Zhang,Jun-Gang Wang,Xiaodi Ren,Ruiguo Cao,Wu Xu,Donald R. Baer,Yingge Du,Oleg Borodin,Yanting Wang,Xuelin Wang,Kang Xu,Zhijie Xu,Chongmin Wang,Zihua Zhu
出处
期刊:Nature Nanotechnology [Nature Portfolio]
卷期号:15 (3): 224-230 被引量:403
标识
DOI:10.1038/s41565-019-0618-4
摘要

The solid–electrolyte interphase (SEI) dictates the performance of most batteries, but the understanding of its chemistry and structure is limited by the lack of in situ experimental tools. In this work, we present a dynamic picture of the SEI formation in lithium-ion batteries using in operando liquid secondary ion mass spectrometry in combination with molecular dynamics simulations. We find that before any interphasial chemistry occurs (during the initial charging), an electric double layer forms at the electrode/electrolyte interface due to the self-assembly of solvent molecules. The formation of the double layer is directed by Li+ and the electrode surface potential. The structure of this double layer predicts the eventual interphasial chemistry; in particular, the negatively charged electrode surface repels salt anions from the inner layer and results in an inner SEI that is thin, dense and inorganic in nature. It is this dense layer that is responsible for conducting Li+ and insulating electrons, the main functions of the SEI. An electrolyte-permeable and organic-rich outer layer appears after the formation of the inner layer. In the presence of a highly concentrated, fluoride-rich electrolyte, the inner SEI layer has an elevated concentration of LiF due to the presence of anions in the double layer. These real-time nanoscale observations will be helpful in engineering better interphases for future batteries. An operando mass spectrometry technique, along with molecular dynamics simulations, unveils the evolution of the solid–electrolyte interphase chemistry and structure in lithium-ion batteries during the first cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiamu发布了新的文献求助10
刚刚
明亮元菱完成签到,获得积分10
1秒前
小胖卷毛完成签到,获得积分10
1秒前
Itazu完成签到,获得积分10
1秒前
XMY147305完成签到,获得积分10
2秒前
祝你勇敢完成签到,获得积分0
3秒前
Dlan完成签到,获得积分0
3秒前
4秒前
吹风机完成签到,获得积分10
4秒前
乐乐应助阿治采纳,获得10
4秒前
4秒前
111111完成签到,获得积分10
5秒前
健忘的小懒虫完成签到,获得积分10
5秒前
6秒前
愿你安好不离笑完成签到,获得积分10
6秒前
蔺景轩完成签到 ,获得积分10
6秒前
张益达完成签到,获得积分10
7秒前
Cheny完成签到 ,获得积分10
7秒前
7秒前
8秒前
华仔应助淡定访枫采纳,获得10
8秒前
康丽发布了新的文献求助10
9秒前
Aster发布了新的文献求助10
9秒前
Yuanchaoyi完成签到,获得积分20
9秒前
Viki完成签到,获得积分10
9秒前
毛毛完成签到,获得积分20
10秒前
踏实语海完成签到,获得积分10
10秒前
戊烷完成签到,获得积分10
10秒前
阔达的海完成签到,获得积分10
10秒前
11秒前
番茄炒西红柿完成签到,获得积分10
11秒前
冷静灵竹完成签到,获得积分10
11秒前
余喆完成签到,获得积分10
12秒前
Yuanchaoyi发布了新的文献求助10
12秒前
李天乐发布了新的文献求助10
12秒前
金元宝完成签到,获得积分10
12秒前
充电宝应助伶俐问薇采纳,获得10
12秒前
希望天下0贩的0应助大白采纳,获得10
13秒前
情怀应助怕黑的凝旋采纳,获得10
13秒前
mrlow完成签到,获得积分10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118837
求助须知:如何正确求助?哪些是违规求助? 4324693
关于积分的说明 13473527
捐赠科研通 4157793
什么是DOI,文献DOI怎么找? 2278607
邀请新用户注册赠送积分活动 1280375
关于科研通互助平台的介绍 1219167