Silicon–germanium receivers for short-wave-infrared optoelectronics and communications

纳米光子学 硅光子学 光子学 微电子 光探测 光电子学 材料科学 光通信 计算机科学 纳米技术 电信 工程物理 光电探测器 物理
作者
Daniel Benedikovič,Léopold Virot,Guy Aubin,Jean‐Michel Hartmann,Farah Amar,Xavier Le Roux,Carlos Alonso‐Ramos,Éric Cassan,Delphine Marris‐Morini,Jean-Marc Fédéli,F. Bœuf,Bertrand Szelag,Laurent Vivien
出处
期刊:Nanophotonics [De Gruyter]
卷期号:10 (3): 1059-1079 被引量:72
标识
DOI:10.1515/nanoph-2020-0547
摘要

Abstract Integrated silicon nanophotonics has rapidly established itself as intriguing research field, whose outlets impact numerous facets of daily life. Indeed, nanophotonics has propelled many advances in optoelectronics, information and communication technologies, sensing and energy, to name a few. Silicon nanophotonics aims to deliver compact and high-performance components based on semiconductor chips leveraging mature fabrication routines already developed within the modern microelectronics. However, the silicon indirect bandgap, the centrosymmetric nature of its lattice and its wide transparency window across optical telecommunication wavebands hamper the realization of essential functionalities, including efficient light generation/amplification, fast electro-optical modulation, and reliable photodetection. Germanium, a well-established complement material in silicon chip industry, has a quasi-direct energy band structure in this wavelength domain. Germanium and its alloys are thus the most suitable candidates for active functions, i.e. bringing them to close to the silicon family of nanophotonic devices. Along with recent advances in silicon–germanium-based lasers and modulators, short-wave-infrared receivers are also key photonic chip elements to tackle cost, speed and energy consumption challenges of exponentially growing data traffics within next-generation systems and networks. Herein, we provide a detailed overview on the latest development in nanophotonic receivers based on silicon and germanium, including material processing, integration and diversity of device designs and arrangements. Our Review also emphasizes surging applications in optoelectronics and communications and concludes with challenges and perspectives potentially encountered in the foreseeable future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
令狐天与完成签到,获得积分10
1秒前
小马甲应助totoro采纳,获得10
1秒前
2秒前
KouZL完成签到,获得积分10
2秒前
研友_Z33zkZ发布了新的文献求助10
2秒前
苏卿应助简单火龙果采纳,获得10
3秒前
SYLH应助nc采纳,获得10
3秒前
5秒前
安详的筮完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
搞怪尔曼发布了新的文献求助10
6秒前
7秒前
若雨凌风应助研友_Z33zkZ采纳,获得10
8秒前
高贵火车完成签到,获得积分10
8秒前
胡杨发布了新的文献求助10
8秒前
惊蕈完成签到,获得积分10
8秒前
在水一方应助赎罪采纳,获得10
8秒前
10秒前
小熊发布了新的文献求助10
10秒前
54321发布了新的文献求助10
10秒前
10秒前
Peri发布了新的文献求助10
11秒前
INNOCENCE发布了新的文献求助10
11秒前
琅琊稳重的团子完成签到,获得积分10
12秒前
孟筱完成签到 ,获得积分10
12秒前
小清新发布了新的文献求助10
13秒前
13秒前
参苓白术炒扁豆完成签到,获得积分10
15秒前
15秒前
不二发布了新的文献求助10
15秒前
顾矜应助无辜的钥匙采纳,获得10
15秒前
3dyf发布了新的文献求助10
16秒前
Lucas应助阳光怀亦采纳,获得10
16秒前
今后应助Hear采纳,获得10
16秒前
jason应助Lemon采纳,获得10
17秒前
totoro发布了新的文献求助10
17秒前
健壮皮带完成签到,获得积分10
18秒前
爆米花应助111111采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469748
求助须知:如何正确求助?哪些是违规求助? 3062929
关于积分的说明 9080652
捐赠科研通 2753160
什么是DOI,文献DOI怎么找? 1510771
邀请新用户注册赠送积分活动 698056
科研通“疑难数据库(出版商)”最低求助积分说明 698018