Unsupervised deep hashing with node representation for image retrieval

散列函数 计算机科学 自编码 图像检索 人工智能 模式识别(心理学) 图形 深度学习 特征哈希 节点(物理) 特征学习 卷积神经网络 代表(政治) 理论计算机科学 图像(数学) 哈希表 双重哈希 政治 工程类 结构工程 计算机安全 法学 政治学
作者
Yangtao Wang,Jingkuan Song,Ke Zhou,Yu Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:112: 107785-107785 被引量:26
标识
DOI:10.1016/j.patcog.2020.107785
摘要

Supervised graph convolution network (GCN) based hashing algorithms have achieved good results by recognizing images according to the relationships between objects, but they are hard to be applied to label-free scenarios. Besides, most existing unsupervised deep hashing algorithms neglect the relationships between different samples and thus fail to achieve high precision. To address this problem, we propose NRDH, an unsupervised Deep Hashing method with Node Representation for image retrieval, which adopts unsupervised GCN to integrate the relationships between samples into image visual features. NRDH consists of node representation learning stage and hash function learning stage. In the first stage, we treat each image as a node of a graph and design GCN-based AutoEncoder, which can integrate the relationships between samples into node representation. In the second stage, we use above node representations to guide the network and help learn the hash function to fast achieve an end-to-end hash model to generate semantic hash codes. Extensive experiments on CIFAR-10, MS-COCO and FLICKR25K show NRDH can achieve higher performance and outperform the state-of-the-art unsupervised deep hashing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
了然完成签到 ,获得积分10
1秒前
jxp完成签到,获得积分10
1秒前
jojo完成签到 ,获得积分10
2秒前
2秒前
勤劳落雁完成签到 ,获得积分10
2秒前
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
赘婿应助Quzhengkai采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
李爱国应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
CodeCraft应助清新的苑博采纳,获得10
8秒前
所所应助Chen采纳,获得10
9秒前
11秒前
11秒前
goldenfleece发布了新的文献求助10
11秒前
怕黑的钥匙完成签到 ,获得积分10
11秒前
zhangsf88完成签到,获得积分10
11秒前
科研通AI5应助科研小能手采纳,获得10
11秒前
乐乐应助热情芷荷采纳,获得10
12秒前
想发sci完成签到,获得积分10
12秒前
kaifeiQi完成签到,获得积分10
12秒前
共享精神应助Elsa采纳,获得10
12秒前
12秒前
Owen应助怎么可能会凉采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808