热稳定性
合理设计
脂肪酶
分子动力学
突变体
化学
毕赤酵母
生物化学
酶
生物
计算化学
遗传学
重组DNA
基因
作者
Rui Wang,Shang Wang,Yan Xu,Xiao‐Wei Yu
标识
DOI:10.1016/j.ijbiomac.2020.05.243
摘要
To improve the thermostability of r27RCL from Rhizopus chinensis and broaden its industrial applications, we used rational design (FoldX) according to ΔΔG calculation to predict mutations. Four thermostable variants S142A, D217V, Q239F, and S250Y were screened out and then combined together to generate a quadruple-mutation (S142A/D217V/Q239F/S250Y) variant, called m31. m31 exhibited enhanced thermostability with a 41.7-fold longer half-life at 60 °C, a 5 °C higher of topt, and 15.8 °C higher of T5030 compared to that of r27RCL expressed in Pichia pastoris. Molecular dynamics simulations were conducted to analyze the mechanism of the thermostable mutant. The results indicated that the rigidity of m31 was improved due to the decreased solvent accessible surface area, a newly formed salt bridge of Glu292:His171, and the increased ΔΔG of m31. According to the root-mean-square-fluctuation analysis, three positive mutations S142A, D217V, and Q239F located in the thermal weak regions and greatly decreased the distribution of thermal-fluctuated regions of m31, compared to that of r27RCL. These results suggested that to simultaneously implement MD simulations and ΔΔG-based rational approaches will be more accurate and efficient for the improvement of enzyme thermostability.
科研通智能强力驱动
Strongly Powered by AbleSci AI