Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Publishing Corporation]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liying完成签到,获得积分10
刚刚
1秒前
丫丫发布了新的文献求助30
1秒前
云淡风轻完成签到,获得积分10
1秒前
hute完成签到,获得积分10
1秒前
睡个好觉发布了新的文献求助10
1秒前
老黑完成签到,获得积分10
2秒前
ENSIL完成签到,获得积分10
2秒前
2秒前
fossil完成签到,获得积分10
2秒前
eleven完成签到,获得积分20
2秒前
2秒前
薛梦发布了新的文献求助10
2秒前
3秒前
3秒前
云淡风轻发布了新的文献求助10
3秒前
VV完成签到,获得积分10
4秒前
刻苦复天发布了新的文献求助10
4秒前
4秒前
小蘑菇应助锦墨人生采纳,获得10
5秒前
Trin发布了新的文献求助10
6秒前
6秒前
行者无疆发布了新的文献求助10
6秒前
小蘑菇应助徐若楠采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
小米粥24完成签到,获得积分10
8秒前
Shuang发布了新的文献求助10
9秒前
yao chen完成签到,获得积分10
9秒前
水沐菁华完成签到,获得积分10
9秒前
Shoujiang完成签到 ,获得积分0
9秒前
9秒前
丹布里发布了新的文献求助10
10秒前
从容宛海发布了新的文献求助10
10秒前
gezid完成签到 ,获得积分10
10秒前
dff发布了新的文献求助10
10秒前
唠叨的可燕完成签到,获得积分10
11秒前
徐若楠完成签到,获得积分20
11秒前
濠哥妈咪完成签到,获得积分10
11秒前
来我家喝桂花茶完成签到,获得积分10
12秒前
彪壮的火车完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639