Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Publishing Corporation]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助rui采纳,获得10
1秒前
1秒前
施小雨完成签到,获得积分20
1秒前
1秒前
1秒前
可达发布了新的文献求助10
2秒前
zillllla发布了新的文献求助10
3秒前
识知者完成签到,获得积分10
3秒前
3秒前
梧桐发布了新的文献求助10
3秒前
3秒前
4秒前
Wendy发布了新的文献求助10
4秒前
4秒前
xzz发布了新的文献求助10
4秒前
爆米花应助178181采纳,获得10
5秒前
旷野发布了新的文献求助10
6秒前
科目三应助标致荔枝采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
爆米花应助长情的月光采纳,获得10
7秒前
JamesPei应助玖Nine采纳,获得10
7秒前
达布妞完成签到,获得积分10
7秒前
8秒前
我是老大应助友好的小翠采纳,获得10
9秒前
思源应助shenzhou9采纳,获得10
9秒前
9秒前
哈哈哈哈发布了新的文献求助10
9秒前
10秒前
10秒前
可爱打工霖完成签到,获得积分10
10秒前
11秒前
L~完成签到,获得积分10
11秒前
modesty发布了新的文献求助10
11秒前
11秒前
施小雨发布了新的文献求助10
12秒前
SYLH应助时空掌门人采纳,获得20
13秒前
13秒前
marry发布了新的文献求助10
13秒前
乐乐应助牧野采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113