Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaokaixin完成签到,获得积分10
刚刚
樱sky完成签到,获得积分10
1秒前
cmmm完成签到 ,获得积分10
1秒前
ZIYU完成签到,获得积分10
1秒前
mmmmmMM发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
香蕉觅云应助火柴two采纳,获得10
2秒前
zxx发布了新的文献求助10
2秒前
奶黄包应助刘鑫采纳,获得20
2秒前
hhh完成签到,获得积分10
2秒前
布兜兜完成签到,获得积分10
3秒前
3秒前
3秒前
白诺言发布了新的文献求助10
4秒前
星辰大海应助江江采纳,获得10
4秒前
4秒前
lololoan完成签到,获得积分10
4秒前
4秒前
特大包包发布了新的文献求助10
5秒前
莲枳榴莲发布了新的文献求助30
5秒前
婷_1988完成签到,获得积分10
6秒前
思源应助暴躁的元灵采纳,获得10
6秒前
无花果应助hhh采纳,获得10
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
追寻德地发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
9秒前
结构小工完成签到,获得积分10
9秒前
JamesPei应助魏士博采纳,获得10
9秒前
脑洞疼应助ANDUIN采纳,获得10
10秒前
小闵发布了新的文献求助10
11秒前
昭昭如愿发布了新的文献求助10
11秒前
上官若男应助真白白鸭采纳,获得10
11秒前
香蕉觅云应助汤圆有奶瓶采纳,获得10
12秒前
赘婿应助长白采纳,获得10
12秒前
12秒前
卡皮巴拉yuan应助sy采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444