Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助Viki采纳,获得10
刚刚
你好完成签到,获得积分10
刚刚
刚刚
随便吧完成签到,获得积分10
刚刚
1秒前
自然蘑菇发布了新的文献求助50
1秒前
土豆刀哥大王完成签到,获得积分20
1秒前
xxxxx完成签到,获得积分10
1秒前
2秒前
2秒前
木子(Tao Li)完成签到,获得积分10
3秒前
彭于晏应助迷路的初柔采纳,获得10
4秒前
4秒前
islanddd发布了新的文献求助10
4秒前
4秒前
Orange应助张兰兰采纳,获得10
4秒前
安静的剑发布了新的文献求助10
5秒前
美年达发布了新的文献求助10
5秒前
李爱国应助milikki采纳,获得10
5秒前
文艺奇迹发布了新的文献求助10
5秒前
6秒前
6秒前
xxxxx发布了新的文献求助10
6秒前
所所应助姚盈盈采纳,获得10
6秒前
7秒前
7秒前
7秒前
9秒前
Stella应助liu采纳,获得10
10秒前
11秒前
活泼的太阳完成签到,获得积分10
11秒前
Susu发布了新的文献求助10
12秒前
彭于晏应助跃天杜采纳,获得10
12秒前
12秒前
琉璃发布了新的文献求助10
12秒前
Berrymeng完成签到,获得积分20
13秒前
贝利亚完成签到,获得积分10
14秒前
热情豌豆发布了新的文献求助30
14秒前
llllggg完成签到 ,获得积分10
14秒前
bkagyin应助电磁波十点半采纳,获得10
15秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300