已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Publishing Corporation]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助健壮慕梅采纳,获得10
1秒前
归海浩阑应助健壮慕梅采纳,获得20
1秒前
生动的薯片完成签到 ,获得积分10
2秒前
盐茶厅人完成签到,获得积分10
2秒前
JQ发布了新的文献求助10
2秒前
今后应助野草采纳,获得10
3秒前
李健应助明亮的颖采纳,获得10
5秒前
任性铅笔发布了新的文献求助10
7秒前
年轻的幼蓉完成签到,获得积分20
8秒前
turbo完成签到,获得积分10
8秒前
脑洞疼应助超人研究生采纳,获得10
9秒前
meimei完成签到 ,获得积分10
9秒前
10秒前
10秒前
无心发布了新的文献求助10
12秒前
13秒前
kelite完成签到 ,获得积分10
14秒前
14秒前
结实智宸应助女爰舍予采纳,获得10
14秒前
mama完成签到 ,获得积分10
16秒前
zeight完成签到,获得积分10
17秒前
17秒前
18秒前
欢喜梦凡完成签到 ,获得积分10
19秒前
明亮的颖发布了新的文献求助10
19秒前
舒适听安完成签到,获得积分10
20秒前
直率定帮发布了新的文献求助10
22秒前
23秒前
helo发布了新的文献求助10
23秒前
陈彦宇完成签到 ,获得积分20
23秒前
24秒前
25秒前
王艳完成签到,获得积分20
26秒前
27秒前
28秒前
28秒前
29秒前
29秒前
dd发布了新的文献求助10
30秒前
001完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197317
求助须知:如何正确求助?哪些是违规求助? 4378660
关于积分的说明 13636710
捐赠科研通 4234455
什么是DOI,文献DOI怎么找? 2322730
邀请新用户注册赠送积分活动 1320896
关于科研通互助平台的介绍 1271517