Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
图图烤肉完成签到,获得积分10
刚刚
ajiaxi完成签到,获得积分10
刚刚
Bruce完成签到,获得积分10
1秒前
英俊的水彤完成签到 ,获得积分10
1秒前
刘金金完成签到,获得积分10
2秒前
2秒前
命运的X号发布了新的文献求助10
2秒前
3秒前
HJJHJH发布了新的文献求助10
3秒前
3秒前
爱听歌的电源完成签到,获得积分10
3秒前
善学以致用应助新的心跳采纳,获得10
3秒前
4秒前
陈梦雨发布了新的文献求助10
5秒前
复杂瑛完成签到,获得积分10
5秒前
5秒前
6秒前
眼睛大世开完成签到 ,获得积分10
6秒前
赤邪发布了新的文献求助10
7秒前
安凉完成签到,获得积分10
7秒前
yangyong完成签到,获得积分10
7秒前
zkkz完成签到,获得积分10
7秒前
打打应助橘子采纳,获得40
7秒前
Jasper应助云澈采纳,获得10
7秒前
隐形曼青应助7777777采纳,获得10
7秒前
科研通AI5应助SCI采纳,获得10
8秒前
芋头不秃头完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
kushdw完成签到,获得积分10
10秒前
傲娇小废柴完成签到,获得积分20
11秒前
TranYan发布了新的文献求助10
11秒前
Sally发布了新的文献求助10
11秒前
sun应助怡然的飞珍采纳,获得20
12秒前
12秒前
13秒前
13秒前
孔雨珍完成签到,获得积分10
14秒前
娇气的春天完成签到 ,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794