Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好吃发布了新的文献求助10
刚刚
机智的凝丝完成签到 ,获得积分10
1秒前
lilymozi发布了新的文献求助10
1秒前
xiaoqf发布了新的文献求助10
2秒前
MOOOO完成签到,获得积分10
2秒前
xin发布了新的文献求助10
2秒前
勤劳亦瑶完成签到,获得积分20
4秒前
斯文败类应助兴奋的万声采纳,获得30
4秒前
chanhow完成签到,获得积分10
4秒前
rainsy发布了新的文献求助10
5秒前
桐桐应助于沁冉采纳,获得30
5秒前
SSS完成签到,获得积分20
6秒前
6秒前
李爱国应助Lucy采纳,获得10
7秒前
一颗葡萄完成签到 ,获得积分10
8秒前
chanhow发布了新的文献求助10
8秒前
9秒前
9秒前
冬日空虚应助小马哥采纳,获得10
10秒前
小二郎应助勤劳亦瑶采纳,获得10
11秒前
田T发布了新的文献求助10
11秒前
慌慌完成签到 ,获得积分10
12秒前
MOOOO发布了新的文献求助10
12秒前
15秒前
SSS发布了新的文献求助10
15秒前
15秒前
俏皮不可完成签到,获得积分10
15秒前
15秒前
残剑月应助香香采纳,获得10
17秒前
薯条发布了新的文献求助10
17秒前
fsznc完成签到 ,获得积分0
18秒前
量子星尘发布了新的文献求助10
18秒前
清风在侧发布了新的文献求助10
19秒前
19秒前
俏皮不可发布了新的文献求助10
19秒前
陈民完成签到,获得积分20
19秒前
Jasper应助加油kiki采纳,获得10
20秒前
21秒前
小马甲应助自由的笑容采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297