已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
莫力布林完成签到 ,获得积分10
2秒前
牛牛完成签到 ,获得积分10
4秒前
5秒前
王者归来完成签到,获得积分10
7秒前
小蘑菇应助海洋球采纳,获得10
8秒前
9秒前
张泽林完成签到,获得积分10
16秒前
Ivy关闭了Ivy文献求助
21秒前
22秒前
落寞的寒云完成签到 ,获得积分10
23秒前
杨武天一发布了新的文献求助10
25秒前
hb完成签到,获得积分10
28秒前
矜天完成签到 ,获得积分10
29秒前
慕青应助xmut采纳,获得10
30秒前
30秒前
31秒前
slby完成签到 ,获得积分10
32秒前
32秒前
37秒前
David完成签到,获得积分10
38秒前
xmut完成签到,获得积分10
38秒前
lizhoukan1完成签到,获得积分10
38秒前
38秒前
xmut发布了新的文献求助10
43秒前
呆呆完成签到 ,获得积分10
43秒前
酷波er应助David采纳,获得10
44秒前
天霸完成签到,获得积分10
46秒前
火星仙人掌完成签到 ,获得积分10
48秒前
挽忆逍遥完成签到 ,获得积分10
48秒前
科目三应助鸡狗不如采纳,获得10
48秒前
49秒前
33333完成签到 ,获得积分10
49秒前
50秒前
51秒前
54秒前
善学以致用应助Yesir采纳,获得10
55秒前
鸡狗不如完成签到,获得积分10
55秒前
Eatanicecube完成签到,获得积分10
56秒前
天霸发布了新的文献求助10
58秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443691
求助须知:如何正确求助?哪些是违规求助? 4553531
关于积分的说明 14242226
捐赠科研通 4475181
什么是DOI,文献DOI怎么找? 2452302
邀请新用户注册赠送积分活动 1443219
关于科研通互助平台的介绍 1418888