Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wxy发布了新的文献求助10
刚刚
端庄忆梅发布了新的文献求助10
刚刚
Ava应助Dd18753801528采纳,获得10
刚刚
科研小嘛发布了新的文献求助10
1秒前
1秒前
1秒前
浮游应助蓝天0812采纳,获得10
2秒前
3秒前
4秒前
Qz完成签到,获得积分10
6秒前
花开富贵发布了新的文献求助10
6秒前
阔达的秀发完成签到,获得积分10
7秒前
hxh发布了新的文献求助10
8秒前
一个西藏发布了新的文献求助10
8秒前
fyukgfdyifotrf完成签到,获得积分10
9秒前
9秒前
dovehanguoge完成签到,获得积分20
10秒前
10秒前
思源应助徐乐采纳,获得10
10秒前
科研通AI6应助www采纳,获得10
11秒前
qian发布了新的文献求助10
11秒前
12秒前
赘婿应助123采纳,获得10
13秒前
15秒前
clover发布了新的文献求助10
15秒前
yyy关注了科研通微信公众号
17秒前
科研通AI6应助Sieg采纳,获得10
17秒前
Mito2009完成签到,获得积分10
18秒前
所所应助企鹅没烦恼采纳,获得10
18秒前
kk发布了新的文献求助10
18秒前
852应助LaLune采纳,获得10
18秒前
18秒前
19秒前
Damon完成签到,获得积分10
19秒前
song发布了新的文献求助10
19秒前
21秒前
24秒前
斯文败类应助NeilJW采纳,获得10
25秒前
斯文败类应助小巧的若云采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355546
求助须知:如何正确求助?哪些是违规求助? 4487473
关于积分的说明 13970113
捐赠科研通 4388096
什么是DOI,文献DOI怎么找? 2410888
邀请新用户注册赠送积分活动 1403438
关于科研通互助平台的介绍 1376951