Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青青发布了新的文献求助10
刚刚
小米发布了新的文献求助10
刚刚
saybia发布了新的文献求助10
刚刚
1秒前
1秒前
麦米米发布了新的文献求助10
1秒前
大个应助罗子超采纳,获得10
2秒前
2秒前
3秒前
咕噜咕噜发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
ltf发布了新的文献求助10
4秒前
4秒前
修语发布了新的文献求助10
4秒前
阔达岂愈发布了新的文献求助10
4秒前
4秒前
5秒前
细心新之发布了新的文献求助10
5秒前
踏实的代曼完成签到,获得积分10
5秒前
5秒前
orixero应助文静人达采纳,获得10
5秒前
Journey发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
轻松的冰淇淋完成签到,获得积分10
7秒前
Z赵发布了新的文献求助10
7秒前
思源应助WYJie采纳,获得10
7秒前
7秒前
9秒前
9秒前
67n发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
自由灵安发布了新的文献求助10
13秒前
13秒前
15秒前
小蘑菇应助Wayne采纳,获得10
15秒前
felix发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761669
求助须知:如何正确求助?哪些是违规求助? 5531072
关于积分的说明 15400289
捐赠科研通 4897942
什么是DOI,文献DOI怎么找? 2634588
邀请新用户注册赠送积分活动 1582751
关于科研通互助平台的介绍 1537985