Development of Paddy Rice Seed Classification Process using Machine Learning Techniques for Automatic Grading Machine

人工智能 机器学习 支持向量机 计算机科学 模式识别(心理学) 预处理器 特征提取
作者
Kantip Kiratiratanapruk,Pitchayagan Temniranrat,Wasin Sinthupinyo,Panintorn Prempree,Kosom Chaitavon,Supanit Porntheeraphat,Anchalee Prasertsak
出处
期刊:Journal of Sensors [Hindawi Limited]
卷期号:2020: 1-14 被引量:55
标识
DOI:10.1155/2020/7041310
摘要

To increase productivity in agricultural production, speed, and accuracy is the key requirement for long-term economic growth, competitiveness, and sustainability. Traditional manual paddy rice seed classification operations are costly and unreliable because human decisions in identifying objects and issues are inconsistent, subjective, and slow. Machine vision technology provides an alternative for automated processes, which are nondestructive, cost-effective, fast, and accurate techniques. In this work, we presented a study that utilized machine vision technology to classify 14 Oryza sativa rice varieties. Each cultivar used over 3,500 seed samples, a total of close to 50,000 seeds. There were three main processes, including preprocessing, feature extraction, and rice variety classification. We started the first process using a seed orientation method that aligned the seed bodies in the same direction. Next, a quality screening method was applied to detect unusual physical seed samples. Their physical information including shape, color, and texture properties was extracted to be data representations for the classification. Four methods (LR, LDA, k-NN, and SVM) of statistical machine learning techniques and five pretrained models (VGG16, VGG19, Xception, InceptionV3, and InceptionResNetV2) on deep learning techniques were applied for the classification performance comparison. In our study, the rice dataset were classified in both subgroups and collective groups for studying ambiguous relationships among them. The best accuracy was obtained from the SVM method at 90.61%, 82.71%, and 83.9% in subgroups 1 and 2 and the collective group, respectively, while the best accuracy on the deep learning techniques was at 95.15% from InceptionResNetV2 models. In addition, we showed an improvement in the overall performance of the system in terms of data qualities involving seed orientation and quality screening. Our study demonstrated a practical design of rice classification using machine vision technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
我是老大应助wsh采纳,获得10
刚刚
斯文败类应助谦让的青亦采纳,获得10
1秒前
kdh510完成签到,获得积分10
1秒前
1秒前
pxj发布了新的文献求助30
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
YWG关注了科研通微信公众号
5秒前
5秒前
NexusExplorer应助文静的翠安采纳,获得10
7秒前
llIIiiIIiill发布了新的文献求助10
7秒前
9秒前
9秒前
上官若男应助guositing采纳,获得10
9秒前
QAQ完成签到,获得积分10
9秒前
EaSy发布了新的文献求助10
10秒前
ataybabdallah发布了新的文献求助30
10秒前
kk完成签到,获得积分20
10秒前
Nyota应助肖小小采纳,获得10
10秒前
10秒前
万宝路完成签到,获得积分10
12秒前
笑点低的银耳汤给笑点低的银耳汤的求助进行了留言
12秒前
13秒前
说与山鬼听罢完成签到,获得积分10
13秒前
14秒前
冷静妙之完成签到,获得积分10
15秒前
大个应助研友_LOoomL采纳,获得10
15秒前
16秒前
07发布了新的文献求助10
16秒前
17秒前
lebron发布了新的文献求助30
17秒前
化学发布了新的文献求助20
18秒前
19秒前
江幻天发布了新的文献求助10
19秒前
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124949
求助须知:如何正确求助?哪些是违规求助? 2775300
关于积分的说明 7726177
捐赠科研通 2430793
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600328