Daphnezomines A and B are structurally unusual Daphniphyllum alkaloids that contain a unique aza-adamantane core skeleton. Herein, a modular approach to these alkaloids is presented that exploits a diverse array of reaction strategies. Commencing from a chiral pool terpene–(S)-carvone, the azabicyclo[3.3.1]nonane backbone, which occurs widely in Daphniphyllum alkaloids, was easily accessed through a Sharpless allylic amination and a palladium-catalyzed oxidative cyclization. A protecting group enabled a stereoselective B-alkyl Suzuki–Miyaura coupling sequence and an Fe-mediated hydrogen atom transfer (HAT)-based radical cyclization were then applied to construct C6 and C8 stereocenters. A final epimer locking strategy enabled the assembly of the highly congested aza-adamantane core, thereby achieving the first total synthesis of (−)-daphnezomines A and B in 14 steps.