Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress

多年生植物 多年生黑麦草 生物 人口 农学 叶绿素 线性回归 数学 植物 园艺 统计 人口学 社会学
作者
Xiongwei Zhao,Gang Nie,Yanyu Yao,Zhongjie Ji,Jianhua Gao,Xingchun Wang,Yiwei Jiang
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:71 (20): 6670-6683 被引量:10
标识
DOI:10.1093/jxb/eraa388
摘要

Genomic prediction of nitrogen-use efficiency (NUE) has not previously been studied in perennial grass species exposed to low-N stress. Here, we conducted a genomic prediction of physiological traits and NUE in 184 global accessions of perennial ryegrass (Lolium perenne) in response to a normal (7.5 mM) and low (0.75 mM) supply of N. After 21 d of treatment under greenhouse conditions, significant variations in plant height increment (ΔHT), leaf fresh weight (LFW), leaf dry weight (LDW), chlorophyll index (Chl), chlorophyll fluorescence, leaf N and carbon (C) contents, C/N ratio, and NUE were observed in accessions , but to a greater extent under low-N stress. Six genomic prediction models were applied to the data, namely the Bayesian method Bayes C, Bayesian LASSO, Bayesian Ridge Regression, Ridge Regression-Best Linear Unbiased Prediction, Reproducing Kernel Hilbert Spaces, and randomForest. These models produced similar prediction accuracy of traits within the normal or low-N treatments, but the accuracy differed between the two treatments. ΔHT, LFW, LDW, and C were predicted slightly better under normal N with a mean Pearson r-value of 0.26, compared with r=0.22 under low N, while the prediction accuracies for Chl, N, C/N, and NUE were significantly improved under low-N stress with a mean r=0.45, compared with r=0.26 under normal N. The population panel contained three population structures, which generally had no effect on prediction accuracy. The moderate prediction accuracies obtained for N, C, and NUE under low-N stress are promising, and suggest a feasible means by which germplasm might be initially assessed for further detailed studies in breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7788999完成签到,获得积分10
刚刚
刚刚
勤恳的夏之完成签到,获得积分20
1秒前
1秒前
lone623应助赵文若采纳,获得10
2秒前
lone623应助赵文若采纳,获得10
2秒前
鹿茸与共发布了新的文献求助10
3秒前
万能图书馆应助AKK采纳,获得10
4秒前
西子阳发布了新的文献求助10
4秒前
5秒前
无误发布了新的文献求助10
5秒前
酷波er应助why采纳,获得10
5秒前
张文懿发布了新的文献求助10
5秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
6秒前
尽如给尽如的求助进行了留言
6秒前
李健的小迷弟应助王富贵采纳,获得30
6秒前
风趣的凝雁完成签到,获得积分10
6秒前
凶狠的山晴完成签到,获得积分20
7秒前
zjz1发布了新的文献求助10
8秒前
9秒前
abtx314发布了新的文献求助10
9秒前
Ava应助端庄的小蝴蝶采纳,获得10
10秒前
zhangyu应助积极以云采纳,获得10
10秒前
科研人发布了新的文献求助10
11秒前
绝情继父发布了新的文献求助10
12秒前
14秒前
QIMUSEN完成签到,获得积分20
15秒前
张文懿完成签到,获得积分10
15秒前
15秒前
岩墩墩发布了新的文献求助10
15秒前
柴子完成签到,获得积分10
15秒前
脑洞疼应助大咸鱼采纳,获得100
16秒前
栗子完成签到,获得积分10
16秒前
zhangyu应助Jimmer采纳,获得10
17秒前
风中道罡完成签到,获得积分20
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998421
求助须知:如何正确求助?哪些是违规求助? 3537865
关于积分的说明 11272824
捐赠科研通 3276939
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883818
科研通“疑难数据库(出版商)”最低求助积分说明 810014