Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress

多年生植物 多年生黑麦草 生物 人口 农学 叶绿素 线性回归 数学 植物 园艺 统计 社会学 人口学
作者
Xiongwei Zhao,Gang Nie,Yanyu Yao,Zhongjie Ji,Jianhua Gao,Xingchun Wang,Yiwei Jiang
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:71 (20): 6670-6683 被引量:10
标识
DOI:10.1093/jxb/eraa388
摘要

Genomic prediction of nitrogen-use efficiency (NUE) has not previously been studied in perennial grass species exposed to low-N stress. Here, we conducted a genomic prediction of physiological traits and NUE in 184 global accessions of perennial ryegrass (Lolium perenne) in response to a normal (7.5 mM) and low (0.75 mM) supply of N. After 21 d of treatment under greenhouse conditions, significant variations in plant height increment (ΔHT), leaf fresh weight (LFW), leaf dry weight (LDW), chlorophyll index (Chl), chlorophyll fluorescence, leaf N and carbon (C) contents, C/N ratio, and NUE were observed in accessions , but to a greater extent under low-N stress. Six genomic prediction models were applied to the data, namely the Bayesian method Bayes C, Bayesian LASSO, Bayesian Ridge Regression, Ridge Regression-Best Linear Unbiased Prediction, Reproducing Kernel Hilbert Spaces, and randomForest. These models produced similar prediction accuracy of traits within the normal or low-N treatments, but the accuracy differed between the two treatments. ΔHT, LFW, LDW, and C were predicted slightly better under normal N with a mean Pearson r-value of 0.26, compared with r=0.22 under low N, while the prediction accuracies for Chl, N, C/N, and NUE were significantly improved under low-N stress with a mean r=0.45, compared with r=0.26 under normal N. The population panel contained three population structures, which generally had no effect on prediction accuracy. The moderate prediction accuracies obtained for N, C, and NUE under low-N stress are promising, and suggest a feasible means by which germplasm might be initially assessed for further detailed studies in breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咻咻发布了新的文献求助10
刚刚
刚刚
刚刚
月亮完成签到 ,获得积分10
刚刚
刚刚
yuan发布了新的文献求助10
刚刚
希望天下0贩的0应助tiasn采纳,获得10
刚刚
今后应助阿尔喷斯少年采纳,获得30
1秒前
小蘑菇应助九方嘉许采纳,获得10
2秒前
自由的晓啸完成签到,获得积分20
2秒前
2秒前
2秒前
大力飞雪发布了新的文献求助10
2秒前
戳戳完成签到 ,获得积分10
2秒前
2秒前
无私的夕阳应助WUWEI采纳,获得10
2秒前
苹果王子6699完成签到 ,获得积分10
3秒前
3秒前
wk完成签到,获得积分10
3秒前
草莓熊发布了新的文献求助10
4秒前
4秒前
对方正在输入完成签到 ,获得积分10
4秒前
4秒前
科研通AI6.1应助祁郁郁采纳,获得10
4秒前
4秒前
venkash完成签到,获得积分10
5秒前
hbb发布了新的文献求助10
5秒前
5秒前
SAKURA完成签到,获得积分10
5秒前
程程程完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
卓垚完成签到,获得积分10
5秒前
6秒前
共享精神应助xiaoting采纳,获得10
6秒前
香蕉千风完成签到 ,获得积分10
7秒前
和谐的数据线完成签到,获得积分10
7秒前
默默的巧荷完成签到,获得积分10
8秒前
风清扬发布了新的文献求助50
8秒前
tiasn完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5774034
求助须知:如何正确求助?哪些是违规求助? 5615602
关于积分的说明 15434217
捐赠科研通 4906509
什么是DOI,文献DOI怎么找? 2640270
邀请新用户注册赠送积分活动 1588076
关于科研通互助平台的介绍 1543114