Natural variation and genomic prediction of growth, physiological traits, and nitrogen-use efficiency in perennial ryegrass under low-nitrogen stress

多年生植物 多年生黑麦草 生物 人口 农学 叶绿素 线性回归 数学 植物 园艺 统计 人口学 社会学
作者
Xiongwei Zhao,Gang Nie,Yanyu Yao,Zhongjie Ji,Jianhua Gao,Xingchun Wang,Yiwei Jiang
出处
期刊:Journal of Experimental Botany [Oxford University Press]
卷期号:71 (20): 6670-6683 被引量:10
标识
DOI:10.1093/jxb/eraa388
摘要

Genomic prediction of nitrogen-use efficiency (NUE) has not previously been studied in perennial grass species exposed to low-N stress. Here, we conducted a genomic prediction of physiological traits and NUE in 184 global accessions of perennial ryegrass (Lolium perenne) in response to a normal (7.5 mM) and low (0.75 mM) supply of N. After 21 d of treatment under greenhouse conditions, significant variations in plant height increment (ΔHT), leaf fresh weight (LFW), leaf dry weight (LDW), chlorophyll index (Chl), chlorophyll fluorescence, leaf N and carbon (C) contents, C/N ratio, and NUE were observed in accessions , but to a greater extent under low-N stress. Six genomic prediction models were applied to the data, namely the Bayesian method Bayes C, Bayesian LASSO, Bayesian Ridge Regression, Ridge Regression-Best Linear Unbiased Prediction, Reproducing Kernel Hilbert Spaces, and randomForest. These models produced similar prediction accuracy of traits within the normal or low-N treatments, but the accuracy differed between the two treatments. ΔHT, LFW, LDW, and C were predicted slightly better under normal N with a mean Pearson r-value of 0.26, compared with r=0.22 under low N, while the prediction accuracies for Chl, N, C/N, and NUE were significantly improved under low-N stress with a mean r=0.45, compared with r=0.26 under normal N. The population panel contained three population structures, which generally had no effect on prediction accuracy. The moderate prediction accuracies obtained for N, C, and NUE under low-N stress are promising, and suggest a feasible means by which germplasm might be initially assessed for further detailed studies in breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiyi完成签到 ,获得积分10
刚刚
洸彦完成签到 ,获得积分10
刚刚
HRB完成签到,获得积分10
刚刚
啊饭完成签到 ,获得积分10
刚刚
火星上小土豆完成签到 ,获得积分10
1秒前
Valley发布了新的文献求助20
1秒前
今后应助科研通管家采纳,获得10
4秒前
wing完成签到 ,获得积分10
10秒前
yulia完成签到 ,获得积分10
12秒前
wrc2333完成签到 ,获得积分10
16秒前
David完成签到,获得积分10
17秒前
嘚儿塔完成签到 ,获得积分10
17秒前
俏皮元珊完成签到 ,获得积分10
18秒前
Ludi完成签到 ,获得积分10
25秒前
皮皮完成签到 ,获得积分10
27秒前
GLF完成签到 ,获得积分10
30秒前
33秒前
35秒前
Roy完成签到,获得积分10
35秒前
碧蓝的机器猫完成签到 ,获得积分10
39秒前
朱婷完成签到 ,获得积分10
42秒前
42秒前
文静灵阳完成签到 ,获得积分10
44秒前
mzrrong完成签到 ,获得积分10
47秒前
Young完成签到 ,获得积分10
54秒前
小螃蟹完成签到 ,获得积分10
55秒前
jreamy完成签到 ,获得积分10
58秒前
砸瓦鲁多发布了新的文献求助10
58秒前
1分钟前
薏仁完成签到 ,获得积分10
1分钟前
CarterXD完成签到,获得积分10
1分钟前
小白完成签到 ,获得积分10
1分钟前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
Leonard_Canon发布了新的文献求助10
1分钟前
even完成签到 ,获得积分10
1分钟前
stop here完成签到,获得积分10
1分钟前
1分钟前
狂野乌冬面完成签到 ,获得积分10
1分钟前
科研通AI6应助砸瓦鲁多采纳,获得10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570402
求助须知:如何正确求助?哪些是违规求助? 3992030
关于积分的说明 12356635
捐赠科研通 3664690
什么是DOI,文献DOI怎么找? 2019675
邀请新用户注册赠送积分活动 1054099
科研通“疑难数据库(出版商)”最低求助积分说明 941674