Multi-stage attention spatial-temporal graph networks for traffic prediction

计算机科学 图形 数据挖掘 邻接矩阵 时间序列 系列(地层学) 人工智能 机器学习 理论计算机科学 生物 古生物学
作者
Xueyan Yin,Genze Wu,Jinze Wei,Yanming Shen,Heng Qi,Baocai Yin
出处
期刊:Neurocomputing [Elsevier]
卷期号:428: 42-53 被引量:59
标识
DOI:10.1016/j.neucom.2020.11.038
摘要

Accurate traffic prediction plays an important role in Intelligent Transportation System. This problem is very challenging due to the heterogeneity and dynamic spatio-temporal dependence of large-scale traffic data. Existing models often suffer two limitations: (1) They usually only consider one type of data in the input, or simply treat other collected time series data as features, ignoring the non-linear interactions among different series. In fact, heterogeneous data at a specific location has direct impacts on the predicted series. (2) The method based on graph convolutional network uses a fixed Laplacian matrix to model spatial correlation, without considering its dynamics. The aggregations also occur only in the neighborhood, making it difficult to capture long-range dependencies. In this paper, we propose a Multi-Stage Attention Spatial-Temporal Graph Networks (MASTGN). First, an internal attention mechanism is designed to capture the interactions among multiple time series collected by the same sensor. Second, to model the complex spatial correlations, we apply a dynamic neighborhood-based attention mechanism. Unlike the general attention-based methods that ignore the structure information of the road network, we use the adjacency relations as a prior to divide the nodes of a road network into different neighborhood sets. In this way, attention can capture spatial correlations both within the same order neighborhood, and among different neighborhoods dynamically. Furthermore, a temporal attention mechanism is used to extract the dynamic temporal dependencies. Experiments are conducted on two real traffic datasets, and the results verify the effectiveness of the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jxlu完成签到,获得积分20
刚刚
木木木木完成签到,获得积分10
刚刚
星星完成签到,获得积分10
刚刚
晚云烟月完成签到,获得积分10
1秒前
2秒前
WT发布了新的文献求助10
2秒前
liaomr完成签到 ,获得积分10
2秒前
可英完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
阿拉波波完成签到,获得积分10
3秒前
纳西妲完成签到,获得积分10
4秒前
4秒前
纯真玉兰完成签到 ,获得积分10
4秒前
闲云野鹤完成签到,获得积分10
4秒前
云猫完成签到 ,获得积分10
5秒前
5秒前
小猫爬楼梯完成签到,获得积分10
5秒前
桑榆未晚完成签到,获得积分10
6秒前
深情安青应助Nora采纳,获得20
6秒前
zhang完成签到,获得积分10
6秒前
Leon发布了新的文献求助10
6秒前
7秒前
123456白发布了新的文献求助10
7秒前
斯文败类应助niunai采纳,获得10
7秒前
阿拉波波发布了新的文献求助10
8秒前
8秒前
星黛Lu完成签到,获得积分10
8秒前
燕返完成签到,获得积分10
8秒前
西西完成签到 ,获得积分10
9秒前
可爱的函函应助Yihua采纳,获得10
9秒前
全圆佑的猫猫完成签到,获得积分10
9秒前
淞33发布了新的文献求助10
11秒前
k包子发布了新的文献求助10
11秒前
噜噜发布了新的文献求助10
13秒前
勤奋的冰淇淋完成签到 ,获得积分10
13秒前
橘络完成签到 ,获得积分10
13秒前
卓诗云发布了新的文献求助10
14秒前
幽默的凡完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155301
求助须知:如何正确求助?哪些是违规求助? 2806126
关于积分的说明 7868151
捐赠科研通 2464545
什么是DOI,文献DOI怎么找? 1311866
科研通“疑难数据库(出版商)”最低求助积分说明 629777
版权声明 601862