Materials Informatics with PoreBlazer v4.0 and the CSD MOF Database

文档 可视化 编码(集合论) 源代码 Fortran语言 计算机科学 材料信息学 计算科学 数据挖掘 健康信息学 程序设计语言 医学 公共卫生 工程信息学 护理部 集合(抽象数据类型)
作者
Lev Sarkisov,Rocío Bueno-Pérez,Mythili Sutharson,David Fairen‐Jimenez
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:32 (23): 9849-9867 被引量:216
标识
DOI:10.1021/acs.chemmater.0c03575
摘要

The development of computational methods to explore crystalline materials has received significant attention in the last decades. Different codes have been reported to help researchers to evaluate and learn about the structure of materials and to understand and predict their properties. In this Methods article, we present an updated version of PoreBlazer, an open-access, open-source Fortran 90 code to calculate structural properties of porous materials. The article describes the properties calculated by the code, their physical meaning, and their relationship to the properties that can be measured experimentally. Here, we reflect on the methods in the code and discuss features of the most recent version. First, we demonstrate the capabilities of PoreBlazer on the prototypical metal–organic framework (MOF) materials, HKUST-1, IRMOF-1, and ZIF-8, and compare the results to those obtained with other codes, Zeo++ and RASPA. Second, we apply PoreBlazer to the recently assembled database of MOF materials—the CSD MOF subset—and compare properties such as the accessible surface area and pore volume from PoreBlazer and the two other codes, and reflect on the possible sources of the differences. Finally, we use PoreBlazer to illustrate how correlations between various structural characteristics can be mined using interactive, dynamic data visualization and how material informatics approaches—including principal component analysis and machine learning—can accelerate the discovery of new materials and new functionalities. The results of these calculations, along with the PoreBlazer code, documentation, and case studies, are available online from https://github.com/SarkisovGroup/PoreBlazer. The data visualization tool is available at https://github.com/aaml-analytics/mof-explorer, and the principal component analysis is available at https://github.com/aaml-analytics/pca-explorer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xg发布了新的文献求助10
1秒前
2秒前
6秒前
NexusExplorer应助优雅海雪采纳,获得10
6秒前
科研通AI5应助heidi采纳,获得10
7秒前
传统的孤丝完成签到 ,获得积分10
8秒前
9秒前
科研通AI5应助susu采纳,获得10
9秒前
10秒前
12秒前
科研通AI2S应助诸笑白采纳,获得10
12秒前
12秒前
12秒前
研友_VZG7GZ应助黄啊涛采纳,获得10
13秒前
迷路的夏之完成签到,获得积分10
14秒前
5114de完成签到,获得积分10
15秒前
大龙哥886发布了新的文献求助30
16秒前
devil发布了新的文献求助10
17秒前
18秒前
徐徐关注了科研通微信公众号
19秒前
思源应助木质素爱好者采纳,获得10
19秒前
Ricardo完成签到 ,获得积分10
22秒前
希望天下0贩的0应助devil采纳,获得10
22秒前
22秒前
Owen应助ubiqutin采纳,获得10
23秒前
油焖青椒发布了新的文献求助10
25秒前
李健应助TT采纳,获得10
25秒前
黎金鑫完成签到,获得积分10
27秒前
27秒前
yuchao_0110完成签到,获得积分10
28秒前
奶盐牙牙乐完成签到 ,获得积分10
29秒前
Santasy发布了新的文献求助10
29秒前
30秒前
呆呆发布了新的文献求助20
30秒前
舒适的平蓝完成签到 ,获得积分10
31秒前
科研通AI5应助Upupcc采纳,获得10
32秒前
32秒前
33秒前
Maestro_S应助英语教育在读采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849