A Feature Weighting-Assisted Approach for Cancer Subtypes Identification From Paired Expression Profiles

加权 计算生物学 鉴定(生物学) 集合(抽象数据类型) 计算机科学 聚类分析 相似性(几何) 数据挖掘 癌症 特征(语言学) 人工智能 模式识别(心理学) 生物 医学 遗传学 图像(数学) 放射科 哲学 植物 程序设计语言 语言学
作者
M. P. Singh,Sushmita Paul
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1403-1414 被引量:1
标识
DOI:10.1109/tcbb.2020.3041723
摘要

Identification of cancer subtypes is critically important for understanding the heterogeneity present in tumors. Projects like The Cancer Genome Atlas (TCGA), have made available the data-sets containing expression profiles of multiple types of biomarkers across the same set of samples. Availability of these types of data-sets help in capturing heterogeneity underlying, complex biological processes and phenotypes. Further, by integrating information from multiple sources, homogeneous groups for cancer can be identified. However, there is a lack of computational approaches to identify histological subtypes among the patients suffering from different types of cancers. Assigning weight to the biomarkers prior to the integration of multiple information sources for the same set of samples can play an important role in cancer subtypes identification, which has not been explored previously. Sub-typing of cancers can help in analyzing shared molecular profiles between different histological subtypes of solid tumors. This can further help in designing appropriate therapies and treatments. A novel method for feature weighting based on robust regression fit is developed in this study. This method assigns a weight to every biomarker on the basis of variability present across the samples. Later, this weight is utilized to find similarity between patients individually from each of the information sources. In this study, the two information sources that have been utilized are miRNA and mRNA expression profiles across the same set of samples. Patient-similarity networks, that are generated from each of the expression profiles are then integrated using the approach of Similarity Network Fusion. Finally, Spectral clustering is applied on the fused network to identify similar groups of patients that represent a cancer subtype. To establish the efficiency of the proposed approach, it has been applied to three types of cancer data-sets and is also compared with the other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心凉完成签到,获得积分10
刚刚
张明完成签到,获得积分20
1秒前
1秒前
一年级完成签到,获得积分10
2秒前
我是老大应助小程同学采纳,获得10
2秒前
Amb1tionG完成签到,获得积分10
2秒前
研友_8DVEpn完成签到,获得积分10
2秒前
3秒前
领导范儿应助李瑁瑁采纳,获得10
4秒前
渊山完成签到,获得积分10
4秒前
科研副本发布了新的文献求助10
4秒前
开放纹发布了新的文献求助10
4秒前
一米阳光完成签到,获得积分10
5秒前
CodeCraft应助张明采纳,获得10
6秒前
Davidfly20完成签到,获得积分10
6秒前
7秒前
乐乐应助D&L采纳,获得10
8秒前
8秒前
最大的毛虫完成签到,获得积分10
9秒前
研友_8DVEpn发布了新的文献求助10
9秒前
ccc完成签到,获得积分10
10秒前
吃饱了继续吃完成签到 ,获得积分10
11秒前
大气新烟完成签到 ,获得积分10
11秒前
Henry应助肖窈采纳,获得30
12秒前
杨树发布了新的文献求助10
12秒前
科研副本完成签到,获得积分10
12秒前
陶醉觅夏发布了新的文献求助10
14秒前
14秒前
CipherSage应助皓月千里采纳,获得10
14秒前
高贵花瓣发布了新的文献求助200
15秒前
16秒前
壮观的大山完成签到,获得积分10
17秒前
18秒前
万能图书馆应助朱朱采纳,获得10
18秒前
脑洞疼应助xr采纳,获得10
19秒前
SciGPT应助Meihi_Uesugi采纳,获得10
19秒前
李瑁瑁发布了新的文献求助10
19秒前
19秒前
20秒前
lige完成签到 ,获得积分10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231478
求助须知:如何正确求助?哪些是违规求助? 2878539
关于积分的说明 8206665
捐赠科研通 2546026
什么是DOI,文献DOI怎么找? 1375617
科研通“疑难数据库(出版商)”最低求助积分说明 647437
邀请新用户注册赠送积分活动 622542