A Feature Weighting-Assisted Approach for Cancer Subtypes Identification From Paired Expression Profiles

加权 计算生物学 鉴定(生物学) 集合(抽象数据类型) 计算机科学 聚类分析 相似性(几何) 数据挖掘 癌症 特征(语言学) 人工智能 模式识别(心理学) 生物 医学 遗传学 图像(数学) 放射科 哲学 植物 程序设计语言 语言学
作者
M. P. Singh,Sushmita Paul
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1403-1414 被引量:1
标识
DOI:10.1109/tcbb.2020.3041723
摘要

Identification of cancer subtypes is critically important for understanding the heterogeneity present in tumors. Projects like The Cancer Genome Atlas (TCGA), have made available the data-sets containing expression profiles of multiple types of biomarkers across the same set of samples. Availability of these types of data-sets help in capturing heterogeneity underlying, complex biological processes and phenotypes. Further, by integrating information from multiple sources, homogeneous groups for cancer can be identified. However, there is a lack of computational approaches to identify histological subtypes among the patients suffering from different types of cancers. Assigning weight to the biomarkers prior to the integration of multiple information sources for the same set of samples can play an important role in cancer subtypes identification, which has not been explored previously. Sub-typing of cancers can help in analyzing shared molecular profiles between different histological subtypes of solid tumors. This can further help in designing appropriate therapies and treatments. A novel method for feature weighting based on robust regression fit is developed in this study. This method assigns a weight to every biomarker on the basis of variability present across the samples. Later, this weight is utilized to find similarity between patients individually from each of the information sources. In this study, the two information sources that have been utilized are miRNA and mRNA expression profiles across the same set of samples. Patient-similarity networks, that are generated from each of the expression profiles are then integrated using the approach of Similarity Network Fusion. Finally, Spectral clustering is applied on the fused network to identify similar groups of patients that represent a cancer subtype. To establish the efficiency of the proposed approach, it has been applied to three types of cancer data-sets and is also compared with the other existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕春宇发布了新的文献求助10
4秒前
一丁雨完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
9秒前
乐乐发布了新的文献求助10
9秒前
Vivianne发布了新的文献求助10
13秒前
大胆班完成签到,获得积分10
15秒前
乐乐完成签到,获得积分20
16秒前
16秒前
17秒前
Qing完成签到,获得积分10
17秒前
17秒前
Cupid完成签到,获得积分10
19秒前
20秒前
哈哈哈发布了新的文献求助30
20秒前
21秒前
张成协发布了新的文献求助10
22秒前
MMX完成签到,获得积分10
22秒前
zym999999发布了新的文献求助10
23秒前
云岫完成签到 ,获得积分10
23秒前
清秀的靖雁应助清玖采纳,获得10
23秒前
24秒前
25秒前
zhang完成签到,获得积分10
25秒前
29秒前
嵩嵩发布了新的文献求助10
30秒前
mmmmm完成签到,获得积分10
31秒前
诸道罡发布了新的文献求助10
32秒前
cxm666发布了新的文献求助10
32秒前
熊i发布了新的文献求助10
34秒前
NexusExplorer应助张成协采纳,获得10
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
华仔应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
地表飞猪应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511