In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal

探地雷达 主成分分析 特征(语言学) 沥青 工程类 特征向量 水分 天线(收音机) 沥青混凝土 雷达 岩土工程 结构工程 模式识别(心理学) 遥感 计算机科学 人工智能 地质学 材料科学 电信 哲学 复合材料 语言学
作者
Jun Zhang,Chao Zhang,LU Ya-ming,Ting Zheng,Zhonghong Dong,Yaogang Tian,Yunyi Jia
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:244: 118295-118295 被引量:49
标识
DOI:10.1016/j.conbuildmat.2020.118295
摘要

A complete solution, including an effective non-destructive evaluation (NDE) method and an automatic recognition model, was provided for the rapid diagnosis of moisture damage in the asphalt pavement by using ground-penetrating radar (GPR) signals. A ground-coupled 2.3 GHz antenna was used to conduct a GPR survey on an asphalt pavement of a bridge deck, where the moisture damage areas were detected and visually recognized in processed GPR B-scan images and further validated in subsequent pavement coring. Field GPR traces of the asphalt layer were read and classified to build a dataset which included 8215 moisture damage and 8215 normal pavement traces. A 28-element time-frequency feature vector was extracted and further reduced to an 11-element sensitive feature vector via the linear discriminant analysis (LDA) method. Principal component analysis (PCA) was adopted to decompose the feature vector into the PCs (principal components), which was used to train a BP-ANN model. The result indicates the high accuracy of the ANN model with sensitive feature vectors, i.e., 95.3% for normal and 92.4% for moisture classification. Finally, the ANN model was used to evaluate the GPR survey data, and its result is consistent with the GPR B-scan feature. These findings suggest that the ground-coupled GPR system with 2.3 GHz antenna and the recognition model will enable an innovative quality evaluation system for asphalt pavement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨芯应助Miracle采纳,获得10
刚刚
研友_LJGpan完成签到,获得积分10
刚刚
xiaozhenA完成签到,获得积分10
刚刚
junzilan发布了新的文献求助10
刚刚
云澈发布了新的文献求助10
刚刚
Hello paper发布了新的文献求助20
1秒前
a111完成签到,获得积分10
1秒前
乐乐应助zzznznnn采纳,获得10
1秒前
哈哈完成签到,获得积分20
2秒前
阳光衣完成签到,获得积分0
2秒前
4秒前
苏兴龙关注了科研通微信公众号
4秒前
4秒前
脑洞疼应助谦让的含海采纳,获得10
4秒前
华华发布了新的文献求助10
4秒前
4秒前
Orange应助命运的X号采纳,获得10
4秒前
云澈完成签到,获得积分10
6秒前
风趣的觅山完成签到,获得积分10
6秒前
打打应助SCI采纳,获得50
6秒前
pinging应助Wang采纳,获得10
6秒前
6秒前
灵巧荆发布了新的文献求助10
7秒前
和谐续完成签到 ,获得积分10
7秒前
李健应助是天使呢采纳,获得10
7秒前
7秒前
8秒前
香菜兔子完成签到,获得积分10
8秒前
茶艺大师づ完成签到,获得积分0
8秒前
蓝愿完成签到,获得积分10
8秒前
9秒前
努力的小狗屁完成签到,获得积分10
9秒前
9秒前
慕青应助彬彬采纳,获得10
10秒前
飘逸蘑菇关注了科研通微信公众号
10秒前
八十关注了科研通微信公众号
11秒前
11秒前
11秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794