In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal

探地雷达 主成分分析 特征(语言学) 沥青 工程类 特征向量 水分 天线(收音机) 沥青混凝土 雷达 岩土工程 结构工程 模式识别(心理学) 遥感 计算机科学 人工智能 地质学 材料科学 电信 哲学 复合材料 语言学
作者
Jun Zhang,Chao Zhang,LU Ya-ming,Ting Zheng,Zhonghong Dong,Yaogang Tian,Yunyi Jia
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:244: 118295-118295 被引量:49
标识
DOI:10.1016/j.conbuildmat.2020.118295
摘要

A complete solution, including an effective non-destructive evaluation (NDE) method and an automatic recognition model, was provided for the rapid diagnosis of moisture damage in the asphalt pavement by using ground-penetrating radar (GPR) signals. A ground-coupled 2.3 GHz antenna was used to conduct a GPR survey on an asphalt pavement of a bridge deck, where the moisture damage areas were detected and visually recognized in processed GPR B-scan images and further validated in subsequent pavement coring. Field GPR traces of the asphalt layer were read and classified to build a dataset which included 8215 moisture damage and 8215 normal pavement traces. A 28-element time-frequency feature vector was extracted and further reduced to an 11-element sensitive feature vector via the linear discriminant analysis (LDA) method. Principal component analysis (PCA) was adopted to decompose the feature vector into the PCs (principal components), which was used to train a BP-ANN model. The result indicates the high accuracy of the ANN model with sensitive feature vectors, i.e., 95.3% for normal and 92.4% for moisture classification. Finally, the ANN model was used to evaluate the GPR survey data, and its result is consistent with the GPR B-scan feature. These findings suggest that the ground-coupled GPR system with 2.3 GHz antenna and the recognition model will enable an innovative quality evaluation system for asphalt pavement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxh完成签到,获得积分10
1秒前
1秒前
Lucas应助自由的松采纳,获得10
2秒前
qphys完成签到,获得积分0
2秒前
2秒前
3秒前
tiptip应助吃吃菜菜吧采纳,获得10
4秒前
桐桐应助等等采纳,获得10
4秒前
5秒前
5秒前
弹幕完成签到,获得积分10
5秒前
ngg完成签到,获得积分10
6秒前
李爱国应助咋咋采纳,获得10
7秒前
拘留所发布了新的文献求助10
7秒前
x1发布了新的文献求助10
7秒前
8秒前
宁祚完成签到,获得积分10
9秒前
wys3712发布了新的文献求助10
10秒前
10秒前
xwydx发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
小蘑菇应助MengpoZhao采纳,获得10
11秒前
Vicki完成签到,获得积分0
11秒前
lingxu完成签到,获得积分10
12秒前
12秒前
12秒前
等等发布了新的文献求助10
14秒前
14秒前
烟花应助姜茶采纳,获得30
16秒前
ken发布了新的文献求助10
16秒前
17秒前
Mu07发布了新的文献求助10
17秒前
顾矜应助酌鹿采纳,获得10
18秒前
yeerenn完成签到,获得积分10
18秒前
陈秀娟完成签到,获得积分10
18秒前
晚星就位发布了新的文献求助10
18秒前
春夏爱科研完成签到,获得积分10
19秒前
Yidie发布了新的文献求助10
20秒前
20秒前
chengyu应助lhm采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713133
求助须知:如何正确求助?哪些是违规求助? 5213704
关于积分的说明 15269646
捐赠科研通 4864955
什么是DOI,文献DOI怎么找? 2611759
邀请新用户注册赠送积分活动 1562014
关于科研通互助平台的介绍 1519213