Improved real-time delay-multiply-and-sum beamforming with coherence factor

波束赋形 计算机科学 图像质量 算法 计算 图像分辨率 对比度 图形处理单元 信噪比(成像) 人工智能 计算机视觉 图像(数学) 电信 并行计算 操作系统
作者
Seungwan Jeon,Eun-Yeong Park,Wonseok Choi,Ravi Managuli,Ki Jong Lee,Chulhong Kim
标识
DOI:10.1117/12.2543646
摘要

Delay-and-sum (DAS) beamforming is the most commonly used algorithm to form photoacoustic (PA) and ultrasound (US) images because of its simple implementation. However, it has several drawbacks such as low image resolution and contrast. To deal with this problem, delay-multiply-and-sum (DMAS) beamforming algorithm was developed a few years ago. It is known that DMAS can improve the image quality by providing higher contrast and narrower main lobe compared to DAS, but its calculation speed is too slow to be implemented for clinical applications. Herein, we introduce an improved DMAS in terms of both imaging speed and quality, and we demonstrated real-time clinical PA imaging. The proposed DMAS provided better lateral resolution and signal-to-noise ratio (SNR) than the original DMAS through a modified coherence factor. Then we accelerated its computation speed by optimizing the algorithm and parallelizing the process using a graphics processing unit (GPU). We quantitatively compared the processing time and the image quality of the proposed algorithm with the conventional algorithms. As the result, it was observed that our proposed algorithm showed better spatial resolution and SNR while achieving real-time imaging framerate. Due to the improvement, the proposed algorithm was successfully implemented on a programmable clinical PA/US imaging system and showed clearer real-time PA images than the conventional DAS images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助墨墨采纳,获得10
刚刚
科目三应助LDY采纳,获得10
刚刚
fifteen发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
潇洒紫寒发布了新的文献求助10
4秒前
南区食堂不好吃完成签到,获得积分10
5秒前
5秒前
淡然发布了新的文献求助10
5秒前
pp完成签到 ,获得积分10
5秒前
zhangyafei发布了新的文献求助10
6秒前
Baoyuan_Zhu发布了新的文献求助10
6秒前
钱多多完成签到,获得积分10
6秒前
MoonFlows应助Aegean采纳,获得20
7秒前
7秒前
9秒前
Jessiez94完成签到,获得积分10
9秒前
豆子完成签到,获得积分10
9秒前
9秒前
咚咚蛋发布了新的文献求助10
10秒前
11秒前
甜甜圈完成签到,获得积分10
13秒前
钱多多发布了新的文献求助10
14秒前
CipherSage应助siyuwang1234采纳,获得10
15秒前
17秒前
雪中发布了新的文献求助10
17秒前
失眠的易梦应助林夕儿采纳,获得10
19秒前
19秒前
充电宝应助坚强的严青采纳,获得10
19秒前
曾经问玉发布了新的文献求助30
20秒前
在水一方应助T_MC郭采纳,获得10
21秒前
斯文败类应助T_MC郭采纳,获得10
21秒前
ding应助T_MC郭采纳,获得10
21秒前
昭谏完成签到,获得积分10
21秒前
烟花应助T_MC郭采纳,获得10
21秒前
fifteen发布了新的文献求助10
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157832
求助须知:如何正确求助?哪些是违规求助? 2809154
关于积分的说明 7880665
捐赠科研通 2467655
什么是DOI,文献DOI怎么找? 1313641
科研通“疑难数据库(出版商)”最低求助积分说明 630467
版权声明 601943