Application of CT-based radiomics in predicting portal pressure and patient outcome in portal hypertension

医学 门脉高压 无线电技术 放射科 门静脉压 队列 静脉曲张 内科学 肝硬化
作者
Yujen Tseng,Lili Ma,Shaobo Li,Tiancheng Luo,Jianjun Luo,Wen Zhang,Jian Wang,Shiyao Chen
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:126: 108927-108927 被引量:16
标识
DOI:10.1016/j.ejrad.2020.108927
摘要

Purpose Portal venous pressure (PVP) measurement is of clinical significance, especially in patients with portal hypertension. However, the invasive nature and associated complications limits its application. The aim of the study is to propose a noninvasive predictive model of PVP values based on CT-extracted radiomic features. Methods Radiomics PVP (rPVP) models based on liver, spleen and combined features were established on an experimental cohort of 169 subjects. Radiomics features were extracted from each ROI and reduced via the LASSO regression to achieve an optimal predictive formula. A validation cohort of 62 patients treated for gastroesophageal varices (GOV) was used to confirm the utility of rPVP in predicting variceal recurrence. The association between rPVP and response to treatment was observed. Results Three separate predictive formula for PVP were derived from radiomics features. rPVP was significantly correlated to patient response to endoscopic treatment for GOV. Among which, the model containing both liver and spleen features has the highest predictability of variceal recurrence, with an optimal cut-off value at 29.102 mmHg (AUC 0.866). A Kaplan Meier analysis further confirmed the difference between patients with varying rPVP values. Conclusion PVP values can be accurately predicted by a non-invasive, CT derived radiomics model. rPVP serves as a non-invasive and precise reference for predicting treatment outcome for GOV secondary to portal hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助Jjj采纳,获得10
1秒前
Emma完成签到,获得积分10
1秒前
爆米花应助fengw420采纳,获得10
1秒前
329完成签到,获得积分10
2秒前
sky发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助英俊芷采纳,获得10
4秒前
在水一方应助dww采纳,获得10
4秒前
lew14应助36456657采纳,获得50
4秒前
筱筱发布了新的文献求助20
5秒前
6秒前
小小狗完成签到,获得积分10
7秒前
文献求助完成签到,获得积分10
7秒前
Tangerine完成签到 ,获得积分10
8秒前
jadexuanxuan完成签到,获得积分10
8秒前
Marybaby完成签到,获得积分10
8秒前
愤怒的乐松应助henryhc_采纳,获得10
9秒前
ZZ完成签到 ,获得积分10
10秒前
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
12秒前
不配.应助科研通管家采纳,获得20
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
耶啵完成签到,获得积分20
13秒前
13秒前
13秒前
14秒前
大个应助内向代珊采纳,获得10
14秒前
所所应助infinity采纳,获得10
14秒前
17秒前
17秒前
nature发布了新的文献求助10
18秒前
19秒前
19秒前
每日洋洋发布了新的文献求助10
20秒前
大模型应助地狱跳跳虎采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3300441
求助须知:如何正确求助?哪些是违规求助? 2935034
关于积分的说明 8471600
捐赠科研通 2608634
什么是DOI,文献DOI怎么找? 1424341
科研通“疑难数据库(出版商)”最低求助积分说明 661991
邀请新用户注册赠送积分活动 645653