Random forests for global sensitivity analysis: A selective review

灵敏度(控制系统) 随机森林 排名(信息检索) 参数统计 计算机科学 关系(数据库) 维数(图论) 排列(音乐) 变量(数学) 非参数统计 回归 随机变量 数据挖掘 机器学习 数学 数学优化 计量经济学 统计 工程类 物理 数学分析 声学 电子工程 纯数学
作者
Anestis Antoniadis,Sophie Lambert‐Lacroix,Jean‐Michel Poggi
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:206: 107312-107312 被引量:130
标识
DOI:10.1016/j.ress.2020.107312
摘要

The understanding of many physical and engineering problems involves running complex computational models. Such models take as input a high number of numerical and physical explanatory variables. The information on these underlying input parameters is often limited or uncertain. It is therefore important, based on the relationships between the input variables and the output, to identify and prioritize the most influential inputs. One may use global sensitivity analysis (GSA) methods which aim at ranking input random variables according to their importance in the output uncertainty, or even quantify the global influence of a particular input on the output. Using sensitivity metrics to ignore less important parameters is a form of dimension reduction in the model’s input parameter space. This suggests the use of meta-modeling as a quantitative approach for nonparametric GSA, where the original input/output relation is first approximated using various statistical regression techniques. Subsequently, the main goal of our work is to provide a comprehensive review paper in the domain of sensitivity analysis focusing on some interesting connections between random forests and GSA. The idea is to use a random forests methodology as an efficient non-parametric approach for building meta-models that allow an efficient sensitivity analysis. Apart its easy applicability to regression problems, the random forests approach presents further strong advantages by its ability to implicitly deal with correlation and high dimensional data, to handle interactions between variables and to identify informative inputs using a permutation based RF variable importance index which is easy and fast to compute. We further review an adequate set of tools for quantifying variable importance which are then exploited to reduce the model’s dimension enabling otherwise infeasible sensibility analysis studies. Numerical results from several simulations and a data exploration on a real dataset are presented to illustrate the effectiveness of such an approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
future完成签到 ,获得积分10
1秒前
wwl关闭了wwl文献求助
2秒前
2秒前
2秒前
lzw完成签到,获得积分10
2秒前
帆帆发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
悦耳冷松完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
独特乘云发布了新的文献求助10
6秒前
悦耳冷松发布了新的文献求助10
6秒前
6秒前
dian完成签到 ,获得积分10
7秒前
吃饱饱完成签到 ,获得积分10
7秒前
彭于晏应助大力绿柏采纳,获得10
8秒前
8秒前
ri_290完成签到 ,获得积分10
9秒前
贾克斯发布了新的文献求助10
9秒前
何处芳歇发布了新的文献求助10
9秒前
小当家完成签到,获得积分10
9秒前
nightmare发布了新的文献求助10
10秒前
Ava应助独特乘云采纳,获得10
12秒前
义气黄焖排骨完成签到,获得积分10
12秒前
古藤完成签到 ,获得积分10
13秒前
shinian完成签到 ,获得积分10
13秒前
JamesPei应助nightmare采纳,获得10
14秒前
15秒前
16秒前
十年完成签到 ,获得积分10
17秒前
wwl发布了新的文献求助10
19秒前
20秒前
默默千亦完成签到 ,获得积分10
20秒前
贾克斯发布了新的文献求助10
21秒前
撸撸大仙完成签到,获得积分20
22秒前
打我呀发布了新的文献求助10
22秒前
23秒前
Jasper应助体贴的之卉采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174