Random forests for global sensitivity analysis: A selective review

灵敏度(控制系统) 随机森林 排名(信息检索) 参数统计 计算机科学 关系(数据库) 维数(图论) 排列(音乐) 变量(数学) 非参数统计 回归 随机变量 数据挖掘 机器学习 数学 数学优化 计量经济学 统计 工程类 物理 数学分析 声学 电子工程 纯数学
作者
Anestis Antoniadis,Sophie Lambert‐Lacroix,Jean‐Michel Poggi
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:206: 107312-107312 被引量:130
标识
DOI:10.1016/j.ress.2020.107312
摘要

The understanding of many physical and engineering problems involves running complex computational models. Such models take as input a high number of numerical and physical explanatory variables. The information on these underlying input parameters is often limited or uncertain. It is therefore important, based on the relationships between the input variables and the output, to identify and prioritize the most influential inputs. One may use global sensitivity analysis (GSA) methods which aim at ranking input random variables according to their importance in the output uncertainty, or even quantify the global influence of a particular input on the output. Using sensitivity metrics to ignore less important parameters is a form of dimension reduction in the model’s input parameter space. This suggests the use of meta-modeling as a quantitative approach for nonparametric GSA, where the original input/output relation is first approximated using various statistical regression techniques. Subsequently, the main goal of our work is to provide a comprehensive review paper in the domain of sensitivity analysis focusing on some interesting connections between random forests and GSA. The idea is to use a random forests methodology as an efficient non-parametric approach for building meta-models that allow an efficient sensitivity analysis. Apart its easy applicability to regression problems, the random forests approach presents further strong advantages by its ability to implicitly deal with correlation and high dimensional data, to handle interactions between variables and to identify informative inputs using a permutation based RF variable importance index which is easy and fast to compute. We further review an adequate set of tools for quantifying variable importance which are then exploited to reduce the model’s dimension enabling otherwise infeasible sensibility analysis studies. Numerical results from several simulations and a data exploration on a real dataset are presented to illustrate the effectiveness of such an approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiang发布了新的文献求助10
刚刚
刚刚
F123发布了新的文献求助10
刚刚
Weekhs发布了新的文献求助30
1秒前
科研通AI6应助嘟嘟采纳,获得10
2秒前
沉静幻天完成签到,获得积分10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
砥砺完成签到,获得积分10
2秒前
anan发布了新的文献求助50
2秒前
popvich应助科研通管家采纳,获得10
2秒前
2秒前
XCL应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
3秒前
XCL应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
adastra完成签到,获得积分10
3秒前
3秒前
XCL应助科研通管家采纳,获得10
3秒前
鲜于觅松完成签到 ,获得积分10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
XCL应助科研通管家采纳,获得10
3秒前
乐乐应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
安平发布了新的文献求助10
4秒前
杭紫雪发布了新的文献求助10
4秒前
和谐谷蕊完成签到,获得积分10
4秒前
彭于晏应助RC_Wang采纳,获得10
4秒前
5秒前
Lucas应助相约在天边采纳,获得30
6秒前
张1发布了新的文献求助10
6秒前
小明应助nm采纳,获得10
6秒前
12345完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556298
求助须知:如何正确求助?哪些是违规求助? 3984399
关于积分的说明 12335572
捐赠科研通 3654388
什么是DOI,文献DOI怎么找? 2013134
邀请新用户注册赠送积分活动 1048076
科研通“疑难数据库(出版商)”最低求助积分说明 936488