石墨氮化碳
催化作用
化学
材料科学
过硫酸盐
碳纤维
热解
氮气
单线态氧
无机化学
光化学
氧气
有机化学
光催化
复合数
复合材料
作者
Yaowen Gao,Tong Li,Yue Zhu,Zhenhuan Chen,Jingyuan Liang,Qingyi Zeng,Lai Lyu,Chun Hu
标识
DOI:10.1016/j.jhazmat.2019.121280
摘要
Nitrogen-doped carbon materials are proposed as promising metal-free catalysts for persulfate-mediated catalytic oxidation process, yet the nitrogen content in the final carbon products is typically low. Moreover, controversies remain in the unambiguous identification of active sites in nitrogen-doped carbons for persulfate activation. Here we report the facile synthesis of nitrogen-doped carbon material via one-step pyrolysis of urea and D-mannitol, which simultaneously combine ultrahigh nitrogen content (up to 33.75 at%) with apparent porous structure via transformation from graphitic carbon nitride. With this strategy, the highly nitrogen-doped porous carbon (NC1.0) exhibits excellent catalytic activity toward peroxymonosulfate (PMS) activation for oxidation of organic pollutants. Both experiments and density functional theory (DFT) calculations, for the first time, revealed that the electron-rich graphitic N and electron-deficient carbon atom adjacent to graphitic N in NC1.0 served as active sites for PMS reduction and oxidation toward the generation of hydroxyl radical (OH) and singlet oxygen (1O2), respectively, in which PMS oxidation was the main reaction in the course of PMS activation rendering 1O2 the dominant reactive oxygen species (ROS) in the NC1.0/PMS system. More importantly, NC1.0 presents robust stability in PMS activation, superior to most reported nitrogen-doped carbon-based catalysts, offering great promise for practical environmental remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI