尖晶石
双金属片
价(化学)
化学
催化作用
八面体
氧化物
金属
电子转移
无机化学
氧化还原
材料科学
结晶学
物理化学
晶体结构
冶金
有机化学
生物化学
作者
Zhiyan Guo,Chen‐Xuan Li,Miao Gao,Xiao Han,Yingjie Zhang,Wenjun Zhang,Wen‐Wei Li
标识
DOI:10.1002/anie.202010828
摘要
Transition metal (TM)-based bimetallic spinel oxides can efficiently activate peroxymonosulfate (PMS) presumably attributed to enhanced electron transfer between TMs, but the existing model cannot fully explain the efficient TM redox cycling. Here, we discover a critical role of TM−O covalency in governing the intrinsic catalytic activity of Co3−xMnxO4 spinel oxides. Experimental and theoretical analysis reveals that the Co sites significantly raises the Mn valence and enlarges Mn−O covalency in octahedral configuration, thereby lowering the charge transfer energy to favor MnOh–PMS interaction. With appropriate MnIV/MnIII ratio to balance PMS adsorption and MnIV reduction, the Co1.1Mn1.9O4 exhibits remarkable catalytic activities for PMS activation and pollutant degradation, outperforming all the reported TM spinel oxides. The improved understandings on the origins of spinel oxides activity for PMS activation may inspire the development of more active and robust metal oxide catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI