A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates

基因 候选基因 生物 自闭症 计算生物学 自闭症谱系障碍 遗传学 选择性拼接 生物信息学
作者
Ying Lin,Shiva Afshar,Anjali M. Rajadhyaksha,James B. Potash,Shizhong Han
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:11 被引量:10
标识
DOI:10.3389/fgene.2020.500064
摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic basis. The role of de novo mutations in ASD has been well established, but the set of genes implicated to date is still far from complete. The current study employs a machine learning-based approach to predict ASD risk genes using features from spatiotemporal gene expression patterns in human brain, gene-level constraint metrics, and other gene variation features. The genes identified through our prediction model were enriched for independent sets of ASD risk genes, and tended to be down-expressed in ASD brains, especially in frontal and parietal cortex. The highest-ranked genes not only included those with strong prior evidence for involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in protein ubiquitination. We also showed that our method outperformed state-of-the-art scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment analysis of our predicted risk genes revealed biological processes clearly relevant to ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also highlighted other potential mechanisms that might underlie ASD, such as regulation of RNA alternative splicing and ubiquitination pathway related to protein degradation. Our study demonstrates that human brain spatiotemporal gene expression patterns and gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system provides a useful resource for prioritizing ASD candidate genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
极度疯狂完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
聪明的灵寒完成签到 ,获得积分10
2秒前
duang发布了新的文献求助10
2秒前
2秒前
黄菠萝发布了新的文献求助10
3秒前
duanduan123发布了新的文献求助10
3秒前
善学以致用应助发发采纳,获得10
3秒前
3秒前
科研通AI6应助胖胖采纳,获得10
4秒前
无奈安双完成签到,获得积分10
5秒前
susu发布了新的文献求助10
5秒前
gzl完成签到,获得积分10
5秒前
shy发布了新的文献求助10
5秒前
方勇飞发布了新的文献求助10
6秒前
tiamr发布了新的文献求助10
7秒前
何禾发布了新的文献求助10
7秒前
xhtnt97完成签到,获得积分10
7秒前
Luna发布了新的文献求助10
7秒前
LiuYinglong发布了新的文献求助10
8秒前
Sea_U应助潇洒书竹采纳,获得10
8秒前
8秒前
8秒前
orixero应助CXC采纳,获得10
8秒前
duang完成签到,获得积分20
9秒前
fgvshow完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
有结果应助15采纳,获得10
10秒前
10秒前
可爱的函函应助wjrakej采纳,获得10
11秒前
UMR应助七七采纳,获得10
11秒前
小白羊发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4989990
求助须知:如何正确求助?哪些是违规求助? 4239121
关于积分的说明 13205413
捐赠科研通 4033396
什么是DOI,文献DOI怎么找? 2206715
邀请新用户注册赠送积分活动 1217847
关于科研通互助平台的介绍 1136025