A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates

基因 候选基因 生物 自闭症 计算生物学 自闭症谱系障碍 遗传学 选择性拼接 生物信息学
作者
Ying Lin,Shiva Afshar,Anjali M. Rajadhyaksha,James B. Potash,Shizhong Han
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:11 被引量:10
标识
DOI:10.3389/fgene.2020.500064
摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic basis. The role of de novo mutations in ASD has been well established, but the set of genes implicated to date is still far from complete. The current study employs a machine learning-based approach to predict ASD risk genes using features from spatiotemporal gene expression patterns in human brain, gene-level constraint metrics, and other gene variation features. The genes identified through our prediction model were enriched for independent sets of ASD risk genes, and tended to be down-expressed in ASD brains, especially in frontal and parietal cortex. The highest-ranked genes not only included those with strong prior evidence for involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in protein ubiquitination. We also showed that our method outperformed state-of-the-art scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment analysis of our predicted risk genes revealed biological processes clearly relevant to ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also highlighted other potential mechanisms that might underlie ASD, such as regulation of RNA alternative splicing and ubiquitination pathway related to protein degradation. Our study demonstrates that human brain spatiotemporal gene expression patterns and gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system provides a useful resource for prioritizing ASD candidate genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
若俗人完成签到,获得积分10
1秒前
1秒前
思思发布了新的文献求助10
1秒前
现实的书芹完成签到,获得积分10
1秒前
tfldog发布了新的文献求助10
2秒前
2秒前
洛洛完成签到,获得积分10
2秒前
勤劳代亦发布了新的文献求助10
3秒前
yi完成签到,获得积分10
3秒前
热心观众完成签到,获得积分10
3秒前
白小超人完成签到 ,获得积分10
4秒前
4秒前
二玥发布了新的文献求助10
4秒前
李明发布了新的文献求助10
5秒前
明天更好发布了新的文献求助10
6秒前
w我我我发布了新的文献求助10
6秒前
CipherSage应助时尚的水香采纳,获得10
6秒前
6秒前
peanut发布了新的文献求助20
6秒前
有志者完成签到,获得积分10
6秒前
小鱼完成签到 ,获得积分10
7秒前
lc完成签到 ,获得积分10
7秒前
思源应助zisu采纳,获得10
8秒前
大个应助zbx采纳,获得10
8秒前
蛋蛋应助123采纳,获得10
8秒前
Wei_eas发布了新的文献求助10
9秒前
Emper完成签到,获得积分10
9秒前
丰盛的煎饼应助赛赛采纳,获得10
9秒前
忧郁的猕猴桃完成签到,获得积分10
10秒前
顾矜应助二玥采纳,获得10
10秒前
10秒前
10秒前
大有阳光完成签到,获得积分10
11秒前
12秒前
Jingg完成签到,获得积分10
12秒前
聪明的鹤完成签到 ,获得积分10
13秒前
脑洞疼应助顾长生采纳,获得10
14秒前
大模型应助lilililili采纳,获得10
14秒前
lpjianai168完成签到,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151134
求助须知:如何正确求助?哪些是违规求助? 2802621
关于积分的说明 7849140
捐赠科研通 2460009
什么是DOI,文献DOI怎么找? 1309425
科研通“疑难数据库(出版商)”最低求助积分说明 628915
版权声明 601757