A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates

基因 候选基因 生物 自闭症 计算生物学 自闭症谱系障碍 遗传学 选择性拼接 生物信息学
作者
Ying Lin,Shiva Afshar,Anjali M. Rajadhyaksha,James B. Potash,Shizhong Han
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:11 被引量:10
标识
DOI:10.3389/fgene.2020.500064
摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic basis. The role of de novo mutations in ASD has been well established, but the set of genes implicated to date is still far from complete. The current study employs a machine learning-based approach to predict ASD risk genes using features from spatiotemporal gene expression patterns in human brain, gene-level constraint metrics, and other gene variation features. The genes identified through our prediction model were enriched for independent sets of ASD risk genes, and tended to be down-expressed in ASD brains, especially in frontal and parietal cortex. The highest-ranked genes not only included those with strong prior evidence for involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in protein ubiquitination. We also showed that our method outperformed state-of-the-art scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment analysis of our predicted risk genes revealed biological processes clearly relevant to ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also highlighted other potential mechanisms that might underlie ASD, such as regulation of RNA alternative splicing and ubiquitination pathway related to protein degradation. Our study demonstrates that human brain spatiotemporal gene expression patterns and gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system provides a useful resource for prioritizing ASD candidate genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
学术裁缝完成签到,获得积分10
1秒前
1秒前
Orange应助l991215y采纳,获得10
2秒前
科研通AI6应助龙龙龙采纳,获得10
2秒前
嘬痰猩猩完成签到,获得积分10
3秒前
贪玩的傲菡完成签到 ,获得积分10
3秒前
Lucas应助killer10831采纳,获得10
3秒前
syt128完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
aaaa完成签到,获得积分10
4秒前
庞祥昆发布了新的文献求助10
4秒前
酷波er应助呦呦采纳,获得10
4秒前
彭于晏应助mtt采纳,获得10
5秒前
一叶知秋发布了新的文献求助10
5秒前
6秒前
echo发布了新的文献求助10
7秒前
7秒前
7秒前
隐形曼青应助八九采纳,获得10
7秒前
8秒前
充电宝应助加百莉采纳,获得10
8秒前
大模型应助paperslicing采纳,获得10
8秒前
9秒前
善学以致用应助淡淡夕阳采纳,获得10
10秒前
小脸神神发布了新的文献求助10
10秒前
英俊的念寒完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
hahaha完成签到,获得积分20
11秒前
11秒前
tanto完成签到,获得积分10
11秒前
Owen应助现实的天蓝采纳,获得10
11秒前
0925完成签到,获得积分10
11秒前
11秒前
12秒前
下文献完成签到,获得积分10
12秒前
12秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442461
求助须知:如何正确求助?哪些是违规求助? 4552718
关于积分的说明 14238070
捐赠科研通 4473972
什么是DOI,文献DOI怎么找? 2451801
邀请新用户注册赠送积分活动 1442690
关于科研通互助平台的介绍 1418574