A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates

基因 候选基因 生物 自闭症 计算生物学 自闭症谱系障碍 遗传学 选择性拼接 生物信息学
作者
Ying Lin,Shiva Afshar,Anjali M. Rajadhyaksha,James B. Potash,Shizhong Han
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:11 被引量:10
标识
DOI:10.3389/fgene.2020.500064
摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic basis. The role of de novo mutations in ASD has been well established, but the set of genes implicated to date is still far from complete. The current study employs a machine learning-based approach to predict ASD risk genes using features from spatiotemporal gene expression patterns in human brain, gene-level constraint metrics, and other gene variation features. The genes identified through our prediction model were enriched for independent sets of ASD risk genes, and tended to be down-expressed in ASD brains, especially in frontal and parietal cortex. The highest-ranked genes not only included those with strong prior evidence for involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in protein ubiquitination. We also showed that our method outperformed state-of-the-art scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment analysis of our predicted risk genes revealed biological processes clearly relevant to ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also highlighted other potential mechanisms that might underlie ASD, such as regulation of RNA alternative splicing and ubiquitination pathway related to protein degradation. Our study demonstrates that human brain spatiotemporal gene expression patterns and gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system provides a useful resource for prioritizing ASD candidate genes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7udo完成签到,获得积分10
2秒前
77发布了新的文献求助10
3秒前
Zhusy发布了新的文献求助30
3秒前
wills应助迷人幻巧采纳,获得10
3秒前
彭于晏应助迷人幻巧采纳,获得10
3秒前
朴素羊完成签到 ,获得积分10
4秒前
bkagyin应助楼梯口无头女孩采纳,获得10
5秒前
CipherSage应助杠赛来采纳,获得10
6秒前
7秒前
Zero完成签到,获得积分10
8秒前
hiter完成签到,获得积分10
10秒前
番茄炒蛋完成签到,获得积分10
10秒前
一只小学弱完成签到,获得积分10
11秒前
董帅完成签到,获得积分10
11秒前
风清扬发布了新的文献求助10
11秒前
kk完成签到 ,获得积分10
13秒前
未碎冰蓝完成签到,获得积分20
14秒前
万能图书馆应助Zhusy采纳,获得30
15秒前
15秒前
lili完成签到,获得积分10
15秒前
鸡鱼蚝发布了新的文献求助10
15秒前
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
tranphucthinh发布了新的文献求助10
20秒前
20秒前
科研通AI6应助鸡鱼蚝采纳,获得10
22秒前
24秒前
赘婿应助One采纳,获得10
24秒前
赘婿应助DamienC采纳,获得10
24秒前
tranphucthinh完成签到,获得积分10
25秒前
treetree的应助YY再摆烂采纳,获得10
26秒前
orixero应助doctorc采纳,获得30
26秒前
杠赛来完成签到,获得积分10
27秒前
无语的大雁完成签到 ,获得积分10
28秒前
30秒前
31秒前
lllate完成签到 ,获得积分10
31秒前
32秒前
33秒前
YY再摆烂完成签到,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316