A Machine Learning Approach to Predicting Autism Risk Genes: Validation of Known Genes and Discovery of New Candidates

基因 候选基因 生物 自闭症 计算生物学 自闭症谱系障碍 遗传学 选择性拼接 生物信息学
作者
Ying Lin,Shiva Afshar,Anjali M. Rajadhyaksha,James B. Potash,Shizhong Han
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:11 被引量:10
标识
DOI:10.3389/fgene.2020.500064
摘要

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic basis. The role of de novo mutations in ASD has been well established, but the set of genes implicated to date is still far from complete. The current study employs a machine learning-based approach to predict ASD risk genes using features from spatiotemporal gene expression patterns in human brain, gene-level constraint metrics, and other gene variation features. The genes identified through our prediction model were enriched for independent sets of ASD risk genes, and tended to be down-expressed in ASD brains, especially in frontal and parietal cortex. The highest-ranked genes not only included those with strong prior evidence for involvement in ASD (for example, NBEA, HERC1, and TCF20), but also indicated potentially novel candidates, such as, MYCBP2 and CAND1, which are involved in protein ubiquitination. We also showed that our method outperformed state-of-the-art scoring systems for ranking curated ASD candidate genes. Gene ontology enrichment analysis of our predicted risk genes revealed biological processes clearly relevant to ASD, including neuronal signaling, neurogenesis, and chromatin remodeling, but also highlighted other potential mechanisms that might underlie ASD, such as regulation of RNA alternative splicing and ubiquitination pathway related to protein degradation. Our study demonstrates that human brain spatiotemporal gene expression patterns and gene-level constraint metrics can help predict ASD risk genes. Our gene ranking system provides a useful resource for prioritizing ASD candidate genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jenny应助哈哈哈哈采纳,获得10
2秒前
笨笨芯应助Miracle采纳,获得10
2秒前
研友_LJGpan完成签到,获得积分10
2秒前
xiaozhenA完成签到,获得积分10
2秒前
junzilan发布了新的文献求助10
2秒前
云澈发布了新的文献求助10
2秒前
Hello paper发布了新的文献求助20
3秒前
a111完成签到,获得积分10
3秒前
乐乐应助zzznznnn采纳,获得10
3秒前
哈哈完成签到,获得积分20
4秒前
阳光衣完成签到,获得积分0
4秒前
6秒前
苏兴龙关注了科研通微信公众号
6秒前
6秒前
脑洞疼应助谦让的含海采纳,获得10
6秒前
华华发布了新的文献求助10
6秒前
6秒前
Orange应助命运的X号采纳,获得10
6秒前
云澈完成签到,获得积分10
8秒前
风趣的觅山完成签到,获得积分10
8秒前
打打应助SCI采纳,获得50
8秒前
pinging应助Wang采纳,获得10
8秒前
8秒前
灵巧荆发布了新的文献求助10
9秒前
和谐续完成签到 ,获得积分10
9秒前
李健应助是天使呢采纳,获得10
9秒前
9秒前
10秒前
香菜兔子完成签到,获得积分10
10秒前
茶艺大师づ完成签到,获得积分0
10秒前
蓝愿完成签到,获得积分10
10秒前
11秒前
努力的小狗屁完成签到,获得积分10
11秒前
11秒前
慕青应助彬彬采纳,获得10
12秒前
飘逸蘑菇关注了科研通微信公众号
12秒前
八十关注了科研通微信公众号
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794