Deep learning based intelligence cognitive vision drone for automatic plant diseases identification and spraying

计算机科学 无人机 云计算 农业 过程(计算) 精准农业 人工智能 深度学习 建筑 地理 操作系统 遗传学 考古 生物
作者
Ghazanfar Latif,Jaafar Alghazo,R. Maheswar,V. Vijayakumar,Muhammad Mohsin Butt
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:39 (6): 8103-8114 被引量:17
标识
DOI:10.3233/jifs-189132
摘要

The agriculture industry is of great importance in many countries and plays a considerable role in the national budget. Also, there is an increased interest in plantation and its effect on the environment. With vast areas suitable for farming, countries are always encouraging farmers through various programs to increase national farming production. However, the vast areas and large farms make it difficult for farmers and workers to continually monitor these broad areas to protect the plants from diseases and various weather conditions. A new concept dubbed Precision Farming has recently surfaced in which the latest technologies play an integral role in the farming process. In this paper, we propose a SMART Drone system equipped with high precision cameras, high computing power with proposed image processing methodologies, and connectivity for precision farming. The SMART system will automatically monitor vast farming areas with precision, identify infected plants, decide on the chemical and exact amount to spray. Besides, the system is connected to the cloud server for sending the images so that the cloud system can generate reports, including prediction on crop yield. The system is equipped with a user-friendly Human Computer Interface (HCI) for communication with the farm base. This multidrone system can process vast areas of farmland daily. The Image processing technique proposed in this paper is a modified ResNet architecture. The system is compared with deep CNN architecture and other machine learning based systems. The ResNet architecture achieves the highest average accuracy of 99.78% on a dataset consisting of 70,295 leaf images for 26 different diseases of 14 plants. The results obtained were compared with the CNN results applied in this paper and other similar techniques in previous literature. The comparisons indicate that the proposed ResNet architecture performs better compared to other similar techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喏晨完成签到 ,获得积分10
刚刚
1秒前
yuan完成签到 ,获得积分10
2秒前
5秒前
5秒前
6秒前
7秒前
一团发布了新的文献求助10
8秒前
8秒前
fairy完成签到,获得积分20
9秒前
所所应助狮子采纳,获得10
9秒前
wangjue发布了新的文献求助10
10秒前
ddm发布了新的文献求助10
10秒前
lf发布了新的文献求助30
12秒前
量子星尘发布了新的文献求助10
14秒前
jianglili发布了新的文献求助10
14秒前
干净访烟完成签到,获得积分20
16秒前
Lucas应助科研通管家采纳,获得10
17秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
17秒前
Singularity应助科研通管家采纳,获得10
17秒前
吴垚应助科研通管家采纳,获得10
17秒前
May应助科研通管家采纳,获得20
18秒前
852应助科研通管家采纳,获得10
18秒前
赘婿应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
iNk应助科研通管家采纳,获得20
18秒前
LaTeXer应助科研通管家采纳,获得50
18秒前
Singularity应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
赵兴才关注了科研通微信公众号
18秒前
情怀应助科研通管家采纳,获得10
18秒前
19秒前
19秒前
21秒前
lf关闭了lf文献求助
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011