Deep learning based intelligence cognitive vision drone for automatic plant diseases identification and spraying

计算机科学 无人机 云计算 农业 过程(计算) 精准农业 人工智能 深度学习 建筑 地理 操作系统 遗传学 生物 考古
作者
Ghazanfar Latif,Jaafar Alghazo,R. Maheswar,V. Vijayakumar,Muhammad Mohsin Butt
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:39 (6): 8103-8114 被引量:17
标识
DOI:10.3233/jifs-189132
摘要

The agriculture industry is of great importance in many countries and plays a considerable role in the national budget. Also, there is an increased interest in plantation and its effect on the environment. With vast areas suitable for farming, countries are always encouraging farmers through various programs to increase national farming production. However, the vast areas and large farms make it difficult for farmers and workers to continually monitor these broad areas to protect the plants from diseases and various weather conditions. A new concept dubbed Precision Farming has recently surfaced in which the latest technologies play an integral role in the farming process. In this paper, we propose a SMART Drone system equipped with high precision cameras, high computing power with proposed image processing methodologies, and connectivity for precision farming. The SMART system will automatically monitor vast farming areas with precision, identify infected plants, decide on the chemical and exact amount to spray. Besides, the system is connected to the cloud server for sending the images so that the cloud system can generate reports, including prediction on crop yield. The system is equipped with a user-friendly Human Computer Interface (HCI) for communication with the farm base. This multidrone system can process vast areas of farmland daily. The Image processing technique proposed in this paper is a modified ResNet architecture. The system is compared with deep CNN architecture and other machine learning based systems. The ResNet architecture achieves the highest average accuracy of 99.78% on a dataset consisting of 70,295 leaf images for 26 different diseases of 14 plants. The results obtained were compared with the CNN results applied in this paper and other similar techniques in previous literature. The comparisons indicate that the proposed ResNet architecture performs better compared to other similar techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eric应助水木采纳,获得30
1秒前
orange完成签到,获得积分10
2秒前
旺仔不甜完成签到,获得积分10
3秒前
泰乐完成签到,获得积分10
3秒前
3秒前
清爽含灵完成签到,获得积分10
4秒前
森冬鸭完成签到,获得积分10
4秒前
超帅的谷蓝完成签到,获得积分10
4秒前
大模型应助命运的X号采纳,获得10
5秒前
5秒前
6秒前
搜集达人应助大脸怪采纳,获得10
7秒前
7秒前
我是生信小菜鸟完成签到,获得积分10
9秒前
9秒前
9秒前
WXY完成签到,获得积分10
10秒前
liang完成签到 ,获得积分10
10秒前
fff发布了新的文献求助10
10秒前
一枝杷枇发布了新的文献求助10
10秒前
9999完成签到,获得积分10
10秒前
qin发布了新的文献求助10
11秒前
11秒前
lulu发布了新的文献求助30
12秒前
同福发布了新的文献求助10
12秒前
轻松的小白菜完成签到,获得积分10
13秒前
okk完成签到 ,获得积分10
13秒前
可罗雀完成签到,获得积分10
13秒前
王九八发布了新的文献求助10
13秒前
Nakjeong发布了新的文献求助10
14秒前
PerGro发布了新的文献求助10
15秒前
16秒前
能干的荆完成签到 ,获得积分10
16秒前
17秒前
李爱国应助Hou采纳,获得10
17秒前
同福完成签到,获得积分20
17秒前
18秒前
一枝杷枇完成签到,获得积分20
19秒前
20秒前
黄婷发布了新的文献求助10
21秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243247
求助须知:如何正确求助?哪些是违规求助? 2887210
关于积分的说明 8247167
捐赠科研通 2555861
什么是DOI,文献DOI怎么找? 1383940
科研通“疑难数据库(出版商)”最低求助积分说明 649782
邀请新用户注册赠送积分活动 625662