Deep learning based intelligence cognitive vision drone for automatic plant diseases identification and spraying

计算机科学 无人机 云计算 农业 过程(计算) 精准农业 人工智能 深度学习 建筑 地理 操作系统 遗传学 考古 生物
作者
Ghazanfar Latif,Jaafar Alghazo,R. Maheswar,V. Vijayakumar,Muhammad Mohsin Butt
出处
期刊:Journal of Intelligent and Fuzzy Systems [IOS Press]
卷期号:39 (6): 8103-8114 被引量:17
标识
DOI:10.3233/jifs-189132
摘要

The agriculture industry is of great importance in many countries and plays a considerable role in the national budget. Also, there is an increased interest in plantation and its effect on the environment. With vast areas suitable for farming, countries are always encouraging farmers through various programs to increase national farming production. However, the vast areas and large farms make it difficult for farmers and workers to continually monitor these broad areas to protect the plants from diseases and various weather conditions. A new concept dubbed Precision Farming has recently surfaced in which the latest technologies play an integral role in the farming process. In this paper, we propose a SMART Drone system equipped with high precision cameras, high computing power with proposed image processing methodologies, and connectivity for precision farming. The SMART system will automatically monitor vast farming areas with precision, identify infected plants, decide on the chemical and exact amount to spray. Besides, the system is connected to the cloud server for sending the images so that the cloud system can generate reports, including prediction on crop yield. The system is equipped with a user-friendly Human Computer Interface (HCI) for communication with the farm base. This multidrone system can process vast areas of farmland daily. The Image processing technique proposed in this paper is a modified ResNet architecture. The system is compared with deep CNN architecture and other machine learning based systems. The ResNet architecture achieves the highest average accuracy of 99.78% on a dataset consisting of 70,295 leaf images for 26 different diseases of 14 plants. The results obtained were compared with the CNN results applied in this paper and other similar techniques in previous literature. The comparisons indicate that the proposed ResNet architecture performs better compared to other similar techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助落落采纳,获得10
1秒前
活力的青枫完成签到 ,获得积分10
1秒前
苏素肃发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
空禅yew发布了新的文献求助10
3秒前
汉堡包应助花开的声音1217采纳,获得10
3秒前
ying发布了新的文献求助10
3秒前
animenz完成签到,获得积分10
4秒前
tY发布了新的文献求助10
5秒前
OJL发布了新的文献求助10
5秒前
5秒前
5秒前
柒柒完成签到,获得积分10
5秒前
丘比特应助111采纳,获得10
6秒前
7秒前
7秒前
XShu完成签到,获得积分20
7秒前
xx完成签到 ,获得积分10
8秒前
羊知鱼完成签到,获得积分10
9秒前
公茂源发布了新的文献求助30
9秒前
搞怪不言发布了新的文献求助10
10秒前
DDDD完成签到,获得积分10
10秒前
陈莹发布了新的文献求助10
10秒前
执着的幻柏完成签到,获得积分10
10秒前
11秒前
11秒前
苏素肃完成签到,获得积分10
11秒前
隐形曼青应助sw98318采纳,获得10
12秒前
wangyanwxy发布了新的文献求助10
13秒前
13秒前
搜集达人应助WTF采纳,获得10
14秒前
Ava应助陆靖易采纳,获得10
14秒前
daishuheng完成签到 ,获得积分10
15秒前
OJL完成签到 ,获得积分10
16秒前
郑思榆完成签到 ,获得积分10
16秒前
wan完成签到 ,获得积分10
17秒前
cheney完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808