BERMP: a cross-species classifier for predicting m6A sites by integrating a deep learning algorithm and a random forest approach

随机森林 分类器(UML) 人工智能 假阳性悖论 机器学习 计算机科学 生物信息学 算法 生物 生物化学 基因
作者
Yu Huang,Ningning He,Yu Chen,Zhen Chen,Lei Li
出处
期刊:International Journal of Biological Sciences [Ivyspring International Publisher]
卷期号:14 (12): 1669-1677 被引量:91
标识
DOI:10.7150/ijbs.27819
摘要

N 6 -methyladenosine (m 6 A) is a prevalent RNA methylation modification involved in several biological processes.Hundreds or thousands of m 6 A sites identified from different species using high-throughput experiments provides a rich resource to construct in-silico approaches for identifying m 6 A sites.The existing m 6 A predictors are developed using conventional machine-learning (ML) algorithms and most are species-centric.In this paper, we develop a novel cross-species deep-learning classifier based on bidirectional Gated Recurrent Unit (BGRU) for the prediction of m 6 A sites.In comparison with conventional ML approaches, BGRU achieves outstanding performance for the Mammalia dataset that contains over fifty thousand m 6 A sites but inferior for the Saccharomyces cerevisiae dataset that covers around a thousand positives.The accuracy of BGRU is sensitive to the data size and the sensitivity is compensated by the integration of a random forest classifier with a novel encoding of enhanced nucleic acid content.The integrated approach dubbed as BGRU-based Ensemble RNA Methylation site Predictor (BERMP) has competitive performance in both cross-validation test and independent test.BERMP also outperforms existing m 6 A predictors for different species.Therefore, BERMP is a novel multi-species tool for identifying m 6 A sites with high confidence.This classifier is freely available at http://www.bioinfogo.org/bermp.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助林士采纳,获得10
刚刚
Hello应助mo采纳,获得10
刚刚
1秒前
YJJ完成签到,获得积分10
1秒前
Kk发布了新的文献求助10
1秒前
leo_zjm完成签到,获得积分10
3秒前
情怀应助py采纳,获得10
3秒前
隐形曼青应助研友_LJbNdL采纳,获得10
4秒前
4秒前
LUOHUS完成签到,获得积分10
5秒前
林海之光发布了新的文献求助10
5秒前
6秒前
6秒前
深情安青应助sci喷涌而出采纳,获得10
7秒前
彩色冥幽发布了新的文献求助10
9秒前
lianqing完成签到,获得积分10
10秒前
枫枫829发布了新的文献求助10
10秒前
11秒前
jiangming完成签到,获得积分10
11秒前
JIERAN完成签到 ,获得积分10
12秒前
13秒前
菜菜完成签到 ,获得积分10
14秒前
14秒前
黄黄完成签到,获得积分0
15秒前
平常水卉完成签到,获得积分10
15秒前
mo发布了新的文献求助10
17秒前
17秒前
17秒前
小刘医生发布了新的文献求助30
18秒前
18秒前
听eryi完成签到,获得积分10
19秒前
20秒前
路明非发布了新的文献求助10
20秒前
烟花应助丰富猕猴桃采纳,获得10
22秒前
22秒前
22秒前
万能图书馆应助啊啊啊采纳,获得10
22秒前
LBX发布了新的文献求助10
23秒前
竹筏过海应助木木杉采纳,获得30
23秒前
immm完成签到,获得积分10
23秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149