LC–MS untargeted metabolomics reveals early biomarkers to predict browning of fresh-cut lettuce

褐变 阿魏酸 代谢组学 代谢组 化学 食品科学 色谱法
作者
Carlos Garcı́a,María I. Gil,Francisco A. Tomás-Barberán
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:146: 9-17 被引量:20
标识
DOI:10.1016/j.postharvbio.2018.07.011
摘要

A complete untargeted metabolomics study was developed to identify biomarkers related to the browning of fresh-cut lettuce which is the main cause of quality loss. For this purpose, UPLC-MS-QTOF analysis was optimized to explore the metabolome of 30 selected cultivars of romaine lettuce with different browning susceptibility harvested at three different harvest dates. Different multivariate analyses and statistics software, such as Agilent Mass Profiler Professional (MPP), SIMCA and The Unscrambler, were used for the selection of entities correlated with browning induced after cutting and storage. A group of metabolites that were identified through the analysis of different databases and comparison with authentic standards when available, highly correlated with browning measured by image analysis measuring Hue angle difference between day 0 and day 5 of storage at 7 °C. A Multiple Linear Regression (MLR) model combined entities matrix and browning. At day 0 the metabolites that correlated positively (P ≤ 0.01) with browning development at day 5 were caffeoylquinic acid and 3-hydroxy-tetradecadienoic acid while ferulic acid methyl ester and 2-O-p-hydroxyphenyl-6-O-galloyl glucose correlated negatively (P ≤ 0.01). This study also confirmed the involvement of different types of metabolites (phenolic compounds, lipids and, terpenes) in the development of browning. A ratio ferulic acid methyl ester/caffeoylquinic acid at time 0 was able to predict browning after 5 days of storage in 70% of the cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助30
2秒前
彩色嚣完成签到 ,获得积分10
2秒前
互助遵法尚德应助泥花采纳,获得10
3秒前
song关注了科研通微信公众号
3秒前
4秒前
江风海韵完成签到,获得积分10
5秒前
jhxie发布了新的文献求助10
5秒前
清脆的不二完成签到,获得积分20
7秒前
科研通AI2S应助劣根采纳,获得10
8秒前
11秒前
QX发布了新的文献求助10
15秒前
15秒前
充电宝应助gfg达达采纳,获得10
18秒前
Loik发布了新的文献求助10
21秒前
26秒前
27秒前
28秒前
29秒前
刘丽梅完成签到 ,获得积分10
30秒前
大个应助Loik采纳,获得10
32秒前
明理的喵发布了新的文献求助10
34秒前
阿曾完成签到 ,获得积分10
34秒前
吃书的猪完成签到,获得积分10
34秒前
王炎欣发布了新的文献求助10
39秒前
丿淘丶Tao丨完成签到,获得积分10
40秒前
Loik完成签到,获得积分20
40秒前
RuiminXie发布了新的文献求助10
43秒前
44秒前
明理的喵完成签到,获得积分10
46秒前
47秒前
48秒前
ponytail发布了新的文献求助10
48秒前
kudoukoumei完成签到,获得积分10
49秒前
keyanwang完成签到 ,获得积分10
52秒前
53秒前
kudoukoumei发布了新的文献求助10
53秒前
悦耳白山发布了新的文献求助10
55秒前
suan发布了新的文献求助10
57秒前
辛夷坞发布了新的文献求助10
58秒前
小马甲应助Muttu采纳,获得10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138556
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791467
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300693
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079