过电位
法拉第效率
催化作用
化学吸附
可逆氢电极
电化学
材料科学
吸附
氮气
无机化学
氧化还原
电极
化学
物理化学
工作电极
有机化学
生物化学
作者
Zishan Han,Changhyeok Choi,Song Hong,Tai‐Sing Wu,Y. L. Soo,Yousung Jung,Jieshan Qiu,Zhenyu Sun
标识
DOI:10.1016/j.apcatb.2019.117896
摘要
Renewable energy-driven electrochemical N2 reduction reaction (NRR) provides a green and sustainable route for NH3 synthesis under ambient conditions but is plagued by a high reaction barrier and low selectivity. To promote NRR, modification of the catalyst surface to increase N2 adsorption and activation is key. Here, we show that engineering surface oxygen vacancies of TiO2 permits significantly enhanced NRR activity with an NH3 yield rate of about 3.0 μgNH3 h−1 mgcat.−1 and a faradaic efficiency (FE) of 6.5% at -0.12 V (vs. the reversible hydrogen electrode, RHE). Efficient conversion of N2 to NH3 is achieved in a wide applied potential range from -0.07 to -0.22 V (vs. RHE) with NH3 production rates ≥ 2.0 μgNH3 h−1 mgcat.-1 and NH3 FEs ≥ 4.9%, respectively. An NH3 FE as high as 9.8% is obtained at a low overpotential of 80 mV. Density functional theory calculations reveal that the surface oxygen vacancies in TiO2 play a vital role in facilitating electrochemical N2 reduction by activating the first protonation step and also increasing N2 chemisorption (relative to *H).
科研通智能强力驱动
Strongly Powered by AbleSci AI