链接(几何体)
计算机科学
路径(计算)
编码
量子
量子行走
加速
功能(生物学)
算法
理论计算机科学
量子计算机
物理
量子力学
进化生物学
生物
基因
操作系统
生物化学
化学
计算机网络
作者
João P. Moutinho,André Melo,Bruno Coutinho,I. Kovács,Yasser Omar
出处
期刊:Physical review
[American Physical Society]
日期:2023-03-10
卷期号:107 (3)
被引量:16
标识
DOI:10.1103/physreva.107.032605
摘要
Predicting new links in physical, biological, social, or technological networks has a significant scientific and societal impact. Path-based link prediction methods utilize the explicit counting of even- and odd-length paths between nodes to quantify a score function and infer new or unobserved links. Here, we propose a quantum algorithm for path-based link prediction using a controlled continuous-time quantum walk to encode even and odd path-based prediction scores. Through classical simulations on a few real networks, we confirm that the quantum walk scoring function performs similarly to other path-based link predictors. In a brief complexity analysis we identify the potential of our approach in uncovering a quantum speedup for path-based link prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI