链接(几何体)
计算机科学
路径(计算)
编码
量子
量子行走
加速
功能(生物学)
算法
理论计算机科学
量子计算机
物理
量子力学
进化生物学
生物
基因
操作系统
生物化学
化学
程序设计语言
计算机网络
作者
Moutinho, João P.,André Melo,Bruno Coelho Coutinho,I. Kovács,Yasser Omar
出处
期刊:Physical review
日期:2023-03-10
卷期号:107 (3)
被引量:3
标识
DOI:10.1103/physreva.107.032605
摘要
Predicting new links in physical, biological, social, or technological networks has a significant scientific and societal impact. Path-based link prediction methods utilize the explicit counting of even- and odd-length paths between nodes to quantify a score function and infer new or unobserved links. Here, we propose a quantum algorithm for path-based link prediction using a controlled continuous-time quantum walk to encode even and odd path-based prediction scores. Through classical simulations on a few real networks, we confirm that the quantum walk scoring function performs similarly to other path-based link predictors. In a brief complexity analysis we identify the potential of our approach in uncovering a quantum speedup for path-based link prediction.
科研通智能强力驱动
Strongly Powered by AbleSci AI