Localization Recall Precision (LRP): A New Performance Metric for Object Detection

计算机科学 精确性和召回率 帕斯卡(单位) 目标检测 探测器 跳跃式监视 判别式 公制(单位) 人工智能 召回 模式识别(心理学) 最小边界框 算法 计算机视觉 图像(数学) 电信 语言学 哲学 经济 程序设计语言 运营管理
作者
Kemal Öksüz,Barış Can Çam,Emre Akbaş,Sinan Kalkan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 521-537 被引量:87
标识
DOI:10.1007/978-3-030-01234-2_31
摘要

Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose “Localization Recall Precision (LRP) Error”, a new metric specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the “Optimal LRP” (oLRP), the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, oLRP determines the “best” confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that oLRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. Our experiments demonstrate that LRP is more competent than AP in capturing the performance of detectors. Our source code for PASCAL VOC AND MSCOCO datasets are provided at https://github.com/cancam/LRP .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助mm采纳,获得10
刚刚
科目三应助Stroeve采纳,获得10
刚刚
1秒前
CodeCraft应助婷婷婷不停采纳,获得10
1秒前
无辜澜完成签到,获得积分10
2秒前
打打应助犹豫的棒棒糖采纳,获得10
2秒前
bilibala完成签到,获得积分10
2秒前
2秒前
3秒前
玮玮发布了新的文献求助10
3秒前
IMkily完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
李爱国应助lyh采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助ziger采纳,获得10
6秒前
swaggy完成签到 ,获得积分10
6秒前
ljh完成签到,获得积分10
6秒前
7秒前
潇笑发布了新的文献求助10
7秒前
文献求助完成签到,获得积分10
8秒前
丘比特应助小Y采纳,获得10
8秒前
9秒前
丽丽发布了新的文献求助10
9秒前
lyle完成签到,获得积分10
9秒前
上官若男应助搞怪的雨南采纳,获得10
10秒前
小李发布了新的文献求助10
10秒前
majiawei发布了新的文献求助10
10秒前
麦迪文的好朋友完成签到,获得积分10
10秒前
10秒前
喜悦寒凝完成签到,获得积分10
10秒前
11秒前
11秒前
隐形曼青应助烂漫大地采纳,获得10
11秒前
11秒前
英俊的铭应助Alice采纳,获得20
11秒前
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033