Localization Recall Precision (LRP): A New Performance Metric for Object Detection

计算机科学 精确性和召回率 帕斯卡(单位) 目标检测 探测器 跳跃式监视 判别式 公制(单位) 人工智能 召回 模式识别(心理学) 最小边界框 算法 计算机视觉 图像(数学) 运营管理 电信 语言学 哲学 经济 程序设计语言
作者
Kemal Öksüz,Barış Can Çam,Emre Akbaş,Sinan Kalkan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 521-537 被引量:87
标识
DOI:10.1007/978-3-030-01234-2_31
摘要

Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose “Localization Recall Precision (LRP) Error”, a new metric specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the “Optimal LRP” (oLRP), the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, oLRP determines the “best” confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that oLRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. Our experiments demonstrate that LRP is more competent than AP in capturing the performance of detectors. Our source code for PASCAL VOC AND MSCOCO datasets are provided at https://github.com/cancam/LRP .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆仙人掌完成签到 ,获得积分10
1秒前
2秒前
谦让寻凝完成签到 ,获得积分10
2秒前
donwe发布了新的文献求助10
3秒前
4秒前
5秒前
baiyeok发布了新的文献求助30
6秒前
zqzqz完成签到,获得积分10
7秒前
8秒前
鸡蛋布丁发布了新的文献求助10
9秒前
星光完成签到,获得积分10
10秒前
10秒前
土土完成签到,获得积分10
11秒前
简让完成签到 ,获得积分10
11秒前
15秒前
12木发布了新的文献求助10
17秒前
19秒前
24秒前
12木完成签到,获得积分10
26秒前
馍夹菜完成签到,获得积分10
29秒前
29秒前
LiQi完成签到,获得积分10
29秒前
33秒前
科目三应助zhu采纳,获得10
37秒前
Shan发布了新的文献求助10
38秒前
39秒前
浮游应助闭眼听风雨采纳,获得10
40秒前
yyanxuemin919发布了新的文献求助10
41秒前
青葱鱼块完成签到 ,获得积分10
44秒前
浅沐发布了新的文献求助10
44秒前
3dyf发布了新的文献求助10
46秒前
47秒前
Keyto7应助Wenfeifei采纳,获得10
49秒前
丹D完成签到,获得积分10
50秒前
蒲云海发布了新的文献求助10
55秒前
55秒前
56秒前
56秒前
lessismore发布了新的文献求助10
58秒前
善学以致用应助kk采纳,获得10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563611
求助须知:如何正确求助?哪些是违规求助? 4648542
关于积分的说明 14685176
捐赠科研通 4590481
什么是DOI,文献DOI怎么找? 2518577
邀请新用户注册赠送积分活动 1491168
关于科研通互助平台的介绍 1462471