亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Localization Recall Precision (LRP): A New Performance Metric for Object Detection

计算机科学 精确性和召回率 帕斯卡(单位) 目标检测 探测器 跳跃式监视 判别式 公制(单位) 人工智能 召回 模式识别(心理学) 最小边界框 算法 计算机视觉 图像(数学) 电信 语言学 哲学 经济 程序设计语言 运营管理
作者
Kemal Öksüz,Barış Can Çam,Emre Akbaş,Sinan Kalkan
出处
期刊:Lecture Notes in Computer Science 卷期号:: 521-537 被引量:87
标识
DOI:10.1007/978-3-030-01234-2_31
摘要

Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose “Localization Recall Precision (LRP) Error”, a new metric specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the “Optimal LRP” (oLRP), the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, oLRP determines the “best” confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that oLRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. Our experiments demonstrate that LRP is more competent than AP in capturing the performance of detectors. Our source code for PASCAL VOC AND MSCOCO datasets are provided at https://github.com/cancam/LRP .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知性的剑身完成签到,获得积分10
19秒前
DocChen发布了新的文献求助10
47秒前
xiaoqingnian完成签到,获得积分10
57秒前
小粒橙完成签到 ,获得积分10
1分钟前
猫抓板完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
万能图书馆应助猫抓板采纳,获得10
3分钟前
3分钟前
猫抓板发布了新的文献求助10
3分钟前
路人应助Magali采纳,获得200
3分钟前
小蘑菇应助猫抓板采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大园完成签到 ,获得积分10
3分钟前
4分钟前
领导范儿应助Magali采纳,获得150
4分钟前
猫抓板发布了新的文献求助10
4分钟前
昭昭完成签到,获得积分10
4分钟前
4分钟前
Magali发布了新的文献求助150
4分钟前
4分钟前
昭昭发布了新的文献求助10
4分钟前
4分钟前
4分钟前
爆米花应助昭昭采纳,获得10
4分钟前
猫抓板发布了新的文献求助10
4分钟前
共享精神应助猫抓板采纳,获得10
4分钟前
5分钟前
猫抓板发布了新的文献求助10
5分钟前
Qing完成签到 ,获得积分10
5分钟前
JamesPei应助猫抓板采纳,获得10
5分钟前
AixLeft完成签到 ,获得积分10
5分钟前
6分钟前
猫抓板发布了新的文献求助10
6分钟前
把饭拼好给你完成签到 ,获得积分10
6分钟前
善学以致用应助猫抓板采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671257
求助须知:如何正确求助?哪些是违规求助? 4912973
关于积分的说明 15134310
捐赠科研通 4830056
什么是DOI,文献DOI怎么找? 2586666
邀请新用户注册赠送积分活动 1540282
关于科研通互助平台的介绍 1498486