反硝化
一氧化二氮
环境科学
硝化作用
温室气体
分水岭
大气科学
水文学(农业)
气候变化
大气(单位)
氮气
环境工程
环境化学
生态学
化学
气象学
地理
工程类
地质学
机器学习
有机化学
岩土工程
生物
计算机科学
作者
Taylor Maavara,Ronny Lauerwald,Goulven G. Laruelle,Zahra Akbarzadeh,Nicholas Bouskill,Philippe Van Cappellen,Pierre Regnier
摘要
Abstract Nitrous oxide (N 2 O) emissions from inland waters remain a major source of uncertainty in global greenhouse gas budgets. N 2 O emissions are typically estimated using emission factors (EFs), defined as the proportion of the terrestrial nitrogen (N) load to a water body that is emitted as N 2 O to the atmosphere. The Intergovernmental Panel on Climate Change (IPCC) has proposed EFs of 0.25% and 0.75%, though studies have suggested that both these values are either too high or too low. In this work, we develop a mechanistic modeling approach to explicitly predict N 2 O production and emissions via nitrification and denitrification in rivers, reservoirs and estuaries. In particular, we introduce a water residence time dependence, which kinetically limits the extent of denitrification and nitrification in water bodies. We revise existing spatially explicit estimates of N loads to inland waters to predict both lumped watershed and half‐degree grid cell emissions and EFs worldwide, as well as the proportions of these emissions that originate from denitrification and nitrification. We estimate global inland water N 2 O emissions of 10.6–19.8 Gmol N year −1 (148–277 Gg N year −1 ), with reservoirs producing most N 2 O per unit area. Our results indicate that IPCC EFs are likely overestimated by up to an order of magnitude, and that achieving the magnitude of the IPCC's EFs is kinetically improbable in most river systems. Denitrification represents the major pathway of N 2 O production in river systems, whereas nitrification dominates production in reservoirs and estuaries.
科研通智能强力驱动
Strongly Powered by AbleSci AI