Stretchable Optical and Electronic Fibers via Thermal Drawing

热的 材料科学 光纤 光电子学 计算机科学 电信 物理 气象学
作者
Yunpeng Qu,Tùng Nguyen-Dang,A.G. Page,Wei Yan,Arouna Darga,G.‐M. Rotaru,René M. Rossi,Valentine Dominique Favrod,Nicola Bartolomei,Fabien Sorin
标识
DOI:10.1109/ifetc.2018.8583875
摘要

Stretchable optical and electronic fibers constitute increasingly important building blocks for a myriad of emerging applications, such as smart textile, robotics, or medical implants. Yet, it remains challenging to fabricate efficient and advanced soft fiber-base devices in a simple and scalable way. Conventional fiber manufacturing methods, such as wet and dry spinning, or extrusion, are not well adapted to fabricate multi-material functional fibers. The preform-to-fiber thermal drawing technique on the other hand is an emerging powerful platform to fabricate multi-material fibers with complex architectures and functionalities. Thus far however, this fabrication approach has been restricted to rigid thermoplastic or glass fibers. In this contribution we will show how we could revisit the selection criteria for cladding materials compatible with the thermal drawing process. In particular, thanks to a deeper rheological characterization, we could identify thermoplastic elastomers that could be drawn from a solid preform at high viscosity. Subsequently, we will demonstrate that thermoplastics, metals, and conductive polymer composites could be co-drawn with prescribed architectures within thermoplastic elastomer cladding. This allowed us to successfully fabricate stretchable optical and electronic fibers that are used as precise and robust pressure and strain sensors, as well as soft and stretchable waveguides as we will show via concrete examples, the ability to thermally draw soft multi-material fibers open new opportunities not only for exploring new academic research directions, but also in industrializing fiber-based flexible and stretchable devices for applications in sensing, health care, robotics and smart textiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐的七宝完成签到 ,获得积分10
刚刚
wzx完成签到,获得积分10
1秒前
乐风完成签到 ,获得积分10
2秒前
123456发布了新的文献求助10
2秒前
十一嘞完成签到,获得积分10
3秒前
无花果应助ounuo采纳,获得10
3秒前
落叶完成签到,获得积分10
4秒前
没事哒发布了新的文献求助10
5秒前
7秒前
8秒前
chen发布了新的文献求助10
8秒前
大个应助彦佳雪采纳,获得10
8秒前
Orange应助大慧慧采纳,获得10
9秒前
万能图书馆应助zqxu采纳,获得10
9秒前
快乐小恬完成签到 ,获得积分10
10秒前
11秒前
CCC应助保住头发为科研采纳,获得20
11秒前
14秒前
欧阳完成签到,获得积分10
15秒前
Carol_Wang完成签到,获得积分10
15秒前
xn发布了新的文献求助10
16秒前
Jun发布了新的文献求助10
17秒前
香蕉凌柏完成签到,获得积分10
17秒前
17秒前
大模型应助123456采纳,获得10
18秒前
18秒前
19秒前
称心的冥幽关注了科研通微信公众号
20秒前
20秒前
大壮完成签到,获得积分10
21秒前
rktrain2023发布了新的文献求助10
22秒前
传奇3应助研友_8y2G0L采纳,获得10
23秒前
24秒前
26秒前
26秒前
研友_V8Qmr8发布了新的文献求助10
27秒前
赘婿应助麻花辫女孩采纳,获得10
28秒前
十一嘞发布了新的文献求助10
28秒前
顾矜应助正直的惜文采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376