材料科学
电极
锂(药物)
离子
衰退
离子键合
化学物理
扩散
转化(遗传学)
降级(电信)
纳米技术
计算机科学
物理
化学
热力学
基因
内分泌学
电信
医学
量子力学
解码方法
生物化学
作者
Yang Yang,Rong Xu,Kai Zhang,Sang‐Jun Lee,Linqin Mu,Pengfei Liu,Crystal K. Waters,Stephanie Spence,Zhengrui Xu,Chenxi Wei,David J. Kautz,Qingxi Yuan,Yuhui Dong,Young‐Sang Yu,Xianghui Xiao,Han‐Koo Lee,P. Pianetta,Peter Cloetens,Jun‐Sik Lee,Kejie Zhao,Feng Lin,Yijin Liu
标识
DOI:10.1002/aenm.201900674
摘要
The multiscale chemomechanical interplay in lithium-ion batteries builds up mechanical stress, provokes morphological breakdown, and leads to state of charge heterogeneity. Quantifying the interplay in complex composite electrodes with multiscale resolution constitutes a frontier challenge in precisely diagnosing the fading mechanism of batteries. In this study, hard X-ray phase contrast tomography, capable of nanoprobing thousands of active particles at once, enables an unprecedented statistical analysis of the chemomechanical transformation of composite electrodes under fast charging conditions. The damage heterogeneity is demonstrated to prevail at all length scales, which stems from the unbalanced electron conduction and ionic diffusion, and collectively leads to the nonuniform utilization of active particles spatially and temporally. This study highlights that the statistical mapping of the chemomechanical transformation offers a diagnostic method for the particles utilization and fading, hence could improve electrode formulation for fast-charging batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI