Optimization models to save energy and enlarge the operational life of water pumping systems

模拟退火 粒子群优化 数学优化 计算机科学 最优化问题 元启发式 时间范围 遗传算法 工程类 算法 数学
作者
Dario Torregrossa,Florin Capitanescu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:213: 89-98 被引量:38
标识
DOI:10.1016/j.jclepro.2018.12.124
摘要

Water pumping systems are widely used in industrial and civil applications. During their operational life, they consume energy and materials (mainly for installation and replacement of components). The aim of this paper is to optimize the pump operations in order to save energy and enlarge the operational life of the pumps and their components. This paper addresses the multi-period (e.g. 24-hours time horizon) optimization of pumping systems. To this end, we have developed a simulation-based optimization approach including novel relevant technical features of a generic but realistic pumping system, namely cavitation and overflow. The proposed multi-period optimization differs further from the classic static optimization (i.e. at the design stage), proposing a new dynamic approach in which pump activation is steered dynamically for an optimal management of the variability of water inflow. Furthermore, the problem includes constraints on the number of pump activations allowed to reduce material strain. The performances of different meta-heuristic optimization algorithms (e.g. genetic algorithm, simulated annealing and particle swarm optimization) for solving the problem are compared. The numerical results show that energy savings are possible with the dynamic approach and that particle swarm optimization and simulated annealing algorithms provide the most suitable solutions for this problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助虫贝采纳,获得10
1秒前
无花果应助喻踏歌采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
3秒前
whatever应助科研通管家采纳,获得30
3秒前
asd发布了新的文献求助10
3秒前
rosalieshi应助科研通管家采纳,获得42
3秒前
3秒前
奇异物质完成签到,获得积分10
3秒前
酷酷颦完成签到,获得积分10
4秒前
4秒前
5秒前
白鸽应助Zhaoyuemeng采纳,获得50
6秒前
7秒前
zhen完成签到,获得积分10
8秒前
王泽皓发布了新的文献求助10
8秒前
9秒前
9秒前
深情安青应助bdueggg采纳,获得10
10秒前
11秒前
mares发布了新的文献求助20
11秒前
12秒前
13秒前
cunzhang发布了新的文献求助10
15秒前
昔年完成签到 ,获得积分10
15秒前
虫贝发布了新的文献求助10
15秒前
可爱代真完成签到,获得积分10
16秒前
17秒前
王泽皓完成签到,获得积分10
17秒前
在水一方应助勤恳的妍采纳,获得20
17秒前
粒粒发布了新的文献求助30
18秒前
科研通AI2S应助彩虹采纳,获得10
19秒前
斯文败类应助Cathay采纳,获得10
20秒前
20秒前
小牙医发布了新的文献求助10
22秒前
sherrycofe应助zhtgang采纳,获得10
22秒前
haliw完成签到,获得积分10
23秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825