材料科学
阳极
锚固
图层(电子)
金属
钾
化学工程
无机化学
纳米技术
电极
冶金
物理化学
结构工程
工程类
化学
作者
Neng Xiao,Jingfeng Zheng,Gerald Gourdin,Luke Schkeryantz,Yiying Wu
标识
DOI:10.1021/acsami.9b02116
摘要
Rechargeable potassium batteries, including the potassium–oxygen (K–O2) battery, are deemed as promising low-cost energy storage solutions. Nevertheless, the chemical stability of the K metal anode remains problematic and hinders their development. In the K–O2 battery, the electrolyte and dissolved oxygen tend to be reduced on the K metal anode, which consumes the active material continuously. Herein, an artificial protective layer is engineered on the K metal anode via a one-step method to mitigate side reactions induced by the solvent and reactive oxygen species. The chemical reaction between K and SbF3 leads to an inorganic composite layer that consists of KF, Sb, and KSbxFy on the surface. This in situ synthesized layer effectively prevents K anode corrosion while maintaining good K+ ionic conductivity in K–O2 batteries. Protection from O2 and moisture also ensures battery safety. Improved anode life span and cycling performance (>30 days) are further demonstrated. This work introduces a novel strategy to stabilize the K anode for rechargeable potassium metal batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI