Divining responder populations from survival data.

医学 内科学 肿瘤科
作者
Rifaquat Rahman,Steffen Ventz,Geoffrey Fell,Alyssa M. Vanderbeek,Lorenzo Trippa,Brian M. Alexander
出处
期刊:Annals of Oncology [Elsevier]
卷期号:30 (6): 1005-1013 被引量:7
标识
DOI:10.1093/annonc/mdz087
摘要

ABSTRACT Background Biomarkers that predict treatment response are the foundation of precision medicine in clinical decision-making and have the potential to significantly improve the efficiency of clinical trials. Such biomarkers may be identified before clinical testing but many trials enroll unselected populations. We hypothesized that time-varying treatment effects in unselected trials may result from identifiable responder subpopulations that may have associated biomarkers. Materials and methods We first simulated scenarios of clinical trials with biomarker populations of varying prevalence and prognostic and predictive associations to illustrate the impact of subgroup-specific effects on overall population estimates. To show a real-world example of time-dependent treatment effects resulting from a prognostic and predictive biomarker, we re-analyzed data from a published clinical trial (RTOG, Radiation Therapy Oncology Group, 9402). We then demonstrated a quantitative framework to fit survival data from clinical trials using statistical models incorporating known estimates of biomarker prevalence and prognostic value to prioritize predictive biomarker hypotheses. Results Our simulation studies demonstrate how biomarker subgroups that are both predictive and prognostic can manifest as time-dependent treatment effects in overall populations. RTOG 9402 provides a representative example where 1p/19q co-deletion and IDH mutation biomarker-specific effects led to time-varying treatment effects and a considerable deviation from proportional hazards in the overall trial population. Finally, using biomarker data from The Cancer Genome Atlas, we were able to generate statistical models that correctly identified and prioritized a commonly used biomarker through retrospective analysis of published clinical trial data. Conclusions Biomarkers that are both predictive and prognostic can result in characteristic changes in survival results. Retrospectively analyzing survival data from clinical trials may highlight potential indications for which an underlying predictive biomarker may be found.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Awake完成签到 ,获得积分10
4秒前
MRJJJJ完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
zhuosht完成签到 ,获得积分10
13秒前
exquisite完成签到,获得积分10
20秒前
枯叶蝶完成签到 ,获得积分10
22秒前
Lina完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
松柏完成签到 ,获得积分10
37秒前
Junex完成签到 ,获得积分10
37秒前
村上春树的摩的完成签到 ,获得积分10
41秒前
机智的孤兰完成签到 ,获得积分10
43秒前
煲煲煲仔饭完成签到 ,获得积分10
46秒前
cata完成签到,获得积分10
46秒前
奥丁不言语完成签到 ,获得积分10
51秒前
高高菠萝完成签到 ,获得积分10
54秒前
Thi发布了新的文献求助10
54秒前
yangpengbo发布了新的文献求助10
54秒前
吃的饱饱呀完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
爱做实验的宝宝完成签到,获得积分10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
儒雅龙完成签到 ,获得积分10
1分钟前
wwwwwl完成签到 ,获得积分10
1分钟前
xiaomingdoc完成签到 ,获得积分10
1分钟前
张正友完成签到 ,获得积分10
1分钟前
livra1058完成签到,获得积分10
1分钟前
Augenstern完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小夜子完成签到 ,获得积分10
1分钟前
Cradoc完成签到 ,获得积分10
1分钟前
zj完成签到 ,获得积分10
1分钟前
谷谷完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
王佳豪完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
QP34完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013