亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Divining responder populations from survival data.

医学 内科学 肿瘤科
作者
Rifaquat Rahman,Steffen Ventz,Geoffrey Fell,Alyssa M. Vanderbeek,Lorenzo Trippa,Brian M. Alexander
出处
期刊:Annals of Oncology [Elsevier]
卷期号:30 (6): 1005-1013 被引量:7
标识
DOI:10.1093/annonc/mdz087
摘要

ABSTRACT Background Biomarkers that predict treatment response are the foundation of precision medicine in clinical decision-making and have the potential to significantly improve the efficiency of clinical trials. Such biomarkers may be identified before clinical testing but many trials enroll unselected populations. We hypothesized that time-varying treatment effects in unselected trials may result from identifiable responder subpopulations that may have associated biomarkers. Materials and methods We first simulated scenarios of clinical trials with biomarker populations of varying prevalence and prognostic and predictive associations to illustrate the impact of subgroup-specific effects on overall population estimates. To show a real-world example of time-dependent treatment effects resulting from a prognostic and predictive biomarker, we re-analyzed data from a published clinical trial (RTOG, Radiation Therapy Oncology Group, 9402). We then demonstrated a quantitative framework to fit survival data from clinical trials using statistical models incorporating known estimates of biomarker prevalence and prognostic value to prioritize predictive biomarker hypotheses. Results Our simulation studies demonstrate how biomarker subgroups that are both predictive and prognostic can manifest as time-dependent treatment effects in overall populations. RTOG 9402 provides a representative example where 1p/19q co-deletion and IDH mutation biomarker-specific effects led to time-varying treatment effects and a considerable deviation from proportional hazards in the overall trial population. Finally, using biomarker data from The Cancer Genome Atlas, we were able to generate statistical models that correctly identified and prioritized a commonly used biomarker through retrospective analysis of published clinical trial data. Conclusions Biomarkers that are both predictive and prognostic can result in characteristic changes in survival results. Retrospectively analyzing survival data from clinical trials may highlight potential indications for which an underlying predictive biomarker may be found.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
13完成签到,获得积分20
1秒前
Diamond完成签到 ,获得积分10
3秒前
3秒前
XUAN发布了新的文献求助10
4秒前
flyingpig发布了新的文献求助10
7秒前
可爱的函函应助DD采纳,获得10
9秒前
GGBond完成签到 ,获得积分10
10秒前
抚琴祛魅完成签到 ,获得积分10
10秒前
夕月完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
hhxyzj完成签到 ,获得积分10
12秒前
13秒前
ZZZ发布了新的文献求助10
17秒前
无私白风发布了新的文献求助10
20秒前
flyingpig完成签到,获得积分10
22秒前
科研通AI6.1应助初始采纳,获得10
23秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
CAOHOU应助科研通管家采纳,获得10
29秒前
无极微光应助科研通管家采纳,获得50
29秒前
CAOHOU应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
30秒前
hhxyzj关注了科研通微信公众号
30秒前
小白完成签到 ,获得积分10
34秒前
NiLou完成签到,获得积分10
35秒前
自觉德天完成签到 ,获得积分10
35秒前
初始发布了新的文献求助10
36秒前
华仔应助lan采纳,获得10
37秒前
范冰冰完成签到,获得积分10
38秒前
领导范儿应助Crw__采纳,获得10
39秒前
40秒前
甜蜜舞蹈完成签到 ,获得积分10
41秒前
ZZZ完成签到,获得积分10
43秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754644
求助须知:如何正确求助?哪些是违规求助? 5488236
关于积分的说明 15380380
捐赠科研通 4893172
什么是DOI,文献DOI怎么找? 2631766
邀请新用户注册赠送积分活动 1579709
关于科研通互助平台的介绍 1535463