Divining responder populations from survival data.

医学 内科学 肿瘤科
作者
Rifaquat Rahman,Steffen Ventz,Geoffrey Fell,Alyssa M. Vanderbeek,Lorenzo Trippa,Brian M. Alexander
出处
期刊:Annals of Oncology [Elsevier]
卷期号:30 (6): 1005-1013 被引量:7
标识
DOI:10.1093/annonc/mdz087
摘要

ABSTRACT Background Biomarkers that predict treatment response are the foundation of precision medicine in clinical decision-making and have the potential to significantly improve the efficiency of clinical trials. Such biomarkers may be identified before clinical testing but many trials enroll unselected populations. We hypothesized that time-varying treatment effects in unselected trials may result from identifiable responder subpopulations that may have associated biomarkers. Materials and methods We first simulated scenarios of clinical trials with biomarker populations of varying prevalence and prognostic and predictive associations to illustrate the impact of subgroup-specific effects on overall population estimates. To show a real-world example of time-dependent treatment effects resulting from a prognostic and predictive biomarker, we re-analyzed data from a published clinical trial (RTOG, Radiation Therapy Oncology Group, 9402). We then demonstrated a quantitative framework to fit survival data from clinical trials using statistical models incorporating known estimates of biomarker prevalence and prognostic value to prioritize predictive biomarker hypotheses. Results Our simulation studies demonstrate how biomarker subgroups that are both predictive and prognostic can manifest as time-dependent treatment effects in overall populations. RTOG 9402 provides a representative example where 1p/19q co-deletion and IDH mutation biomarker-specific effects led to time-varying treatment effects and a considerable deviation from proportional hazards in the overall trial population. Finally, using biomarker data from The Cancer Genome Atlas, we were able to generate statistical models that correctly identified and prioritized a commonly used biomarker through retrospective analysis of published clinical trial data. Conclusions Biomarkers that are both predictive and prognostic can result in characteristic changes in survival results. Retrospectively analyzing survival data from clinical trials may highlight potential indications for which an underlying predictive biomarker may be found.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到,获得积分10
1秒前
大个应助gxr采纳,获得10
1秒前
nick发布了新的文献求助10
1秒前
小张完成签到,获得积分20
1秒前
星星发布了新的文献求助10
1秒前
2秒前
张振宇完成签到 ,获得积分10
2秒前
3秒前
NexusExplorer应助一尺经年采纳,获得10
3秒前
酷波er应助HBY采纳,获得10
3秒前
3秒前
4秒前
Phoenix完成签到 ,获得积分10
4秒前
李学谦发布了新的文献求助10
4秒前
星辰大海应助小美爱科研采纳,获得10
6秒前
6秒前
李麟发布了新的文献求助10
7秒前
斯文败类应助WTT采纳,获得10
7秒前
金刚经应助nick采纳,获得10
7秒前
传奇3应助wanghq采纳,获得50
7秒前
7秒前
shmily发布了新的文献求助10
8秒前
科研通AI2S应助ck采纳,获得10
8秒前
Akim应助ysynqqr采纳,获得10
8秒前
8秒前
10秒前
大气靳完成签到,获得积分10
10秒前
奥利奥发布了新的文献求助10
10秒前
张振宇完成签到 ,获得积分10
10秒前
10秒前
忧心的渊思关注了科研通微信公众号
11秒前
宋莱文发布了新的文献求助10
11秒前
12秒前
清脆雪萍关注了科研通微信公众号
12秒前
皮凡发布了新的文献求助10
12秒前
jiaolulu发布了新的文献求助10
13秒前
充电宝应助李麟采纳,获得10
13秒前
Green发布了新的文献求助10
14秒前
LMY1411完成签到,获得积分10
15秒前
WTT完成签到,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260545
求助须知:如何正确求助?哪些是违规求助? 2901746
关于积分的说明 8316854
捐赠科研通 2571281
什么是DOI,文献DOI怎么找? 1396969
科研通“疑难数据库(出版商)”最低求助积分说明 653604
邀请新用户注册赠送积分活动 632040