炎症
串扰
全身炎症
医学
免疫学
阿尔茨海默病
神经科学
疾病
心理学
病理
工程类
电子工程
作者
Evi Paouri,Spiros Georgopoulos
标识
DOI:10.2174/1567205016666190321154618
摘要
After years of failed therapeutic attempts targeting beta-amyloid (Aβ) in AD, there is now increasing evidence suggesting that inflammation holds a pivotal role in AD pathogenesis and immune pathways can possibly comprise primary therapeutic targets. Inflammation is a key characteristic of numerous diseases including neurodegenerative disorders and thus not surprisingly suppression of inflammation frequently constitutes a major therapeutic strategy for a wide spectrum of disorders. Several brain-resident and peripherally-derived immune populations and inflammatory mediators are involved in AD pathophysiology, with microglia comprising central cellular player in the disease process. Systemic inflammation, mostly in the form of infections, has long been observed to induce behavioral alterations and cognitive dysfunction, suggesting for a close interaction of the peripheral immune system with the brain. Systemic inflammation can result in neuroinflammation, mainly exhibited as microglial activation, production of inflammatory molecules, as well as recruitment of peripheral immune cells in the brain, thus shaping a cerebral inflammatory milieu that may seriously impact neuronal function. Increasing clinical and experimental studies have provided significant evidence that acute (e.g. infections) or chronic (e.g. autoimmune diseases like rheumatoid arthritis) systemic inflammatory conditions may be associated with increased AD risk and accelerate AD progression. Here we review the current literature that links systemic with CNS inflammation and the implications of this interaction for AD in the context of acute and chronic systemic pathologies as acute infection and rheumatoid arthritis. Elucidating the mechanisms that govern the crosstalk between the peripheral and the local brain immune system may provide the ground for new therapeutic approaches that target the immune-brain interface and shed light on the understanding of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI