Weakly-supervised deep learning of interstitial lung disease types on CT images

卷积神经网络 人工智能 计算机科学 上下文图像分类 深度学习 模态(人机交互) 模式识别(心理学) 特发性肺纤维化 间质性肺病 聚类分析 特发性间质性肺炎 领域(数学) 人工神经网络 医学 图像(数学) 数学 纯数学 内科学
作者
Chenglong Wang,Takayasu Moriya,Yuichiro Hayashi,Holger R. Roth,Le Lü,Masahiro Oda,Hirotsugu Ohkubo,Kensaku Mori
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 被引量:10
标识
DOI:10.1117/12.2512746
摘要

Accurate classification and precise quantification of interstitial lung disease (ILD) types on CT images remain important challenges in clinical diagnosis. Multi-modality image information is required to assist diagnosing diseases. To build scalable deep-learning solutions for this problem, how to take full advantage of existing large-scale datasets in modern hospitals has become a critical task. In this paper, we present DeepILD, as a novel computer-aided diagnostic framework to address the ILD classification task only from single modality (CT image) using a deep neural network. More specifically, we propose integrating spherical semi-supervised K- means clustering and convolutional neural networks for ILD classification and disease quantification. We firstly use semi-supervised spherical K-means to divide the CT lung area into normal and abnormal sub-regions. A convolutional neural network (CNN) is subsequently invoked to perform training using image patches extracted from the abnormal regions. Here, we focus on the classification of three chronic fibrosing ILD types: idiopathic pulmonary fibrosis (IPF), idiopathic non-specific interstitial pneumonia (iNSIP), and chronic hypersensitivity pneumonia (CHP). Excellent classification accuracy has been achieved using a dataset of 188 CT scans; in particular, our IPF classification reached about 88% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Alex完成签到,获得积分10
1秒前
tuyibo完成签到 ,获得积分10
3秒前
传奇3应助博修采纳,获得30
3秒前
0001完成签到,获得积分10
3秒前
将将将完成签到,获得积分10
4秒前
wakkkkk完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
卓聪健完成签到,获得积分10
8秒前
FashionBoy应助犹豫帆布鞋采纳,获得10
9秒前
天天快乐应助魏一刀采纳,获得10
10秒前
ding应助礽粥粥采纳,获得10
11秒前
12秒前
13秒前
13秒前
14秒前
小田应助王开晙采纳,获得10
16秒前
bofu发布了新的文献求助10
17秒前
jinghong完成签到 ,获得积分10
18秒前
19秒前
19秒前
21秒前
23秒前
魏一刀发布了新的文献求助10
24秒前
bofu发布了新的文献求助10
24秒前
25秒前
26秒前
CipherSage应助一一采纳,获得10
26秒前
万能图书馆应助我是三三采纳,获得10
28秒前
热闹的冬天完成签到,获得积分10
29秒前
博修发布了新的文献求助30
29秒前
an完成签到 ,获得积分10
30秒前
bofu发布了新的文献求助10
30秒前
32秒前
烟花应助qianlan采纳,获得10
33秒前
33秒前
35秒前
35秒前
bofu发布了新的文献求助10
36秒前
hjl90527发布了新的文献求助10
37秒前
姆姆发布了新的文献求助10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150