Weakly-supervised deep learning of interstitial lung disease types on CT images

卷积神经网络 人工智能 计算机科学 上下文图像分类 深度学习 模态(人机交互) 模式识别(心理学) 特发性肺纤维化 间质性肺病 聚类分析 特发性间质性肺炎 领域(数学) 人工神经网络 医学 图像(数学) 数学 纯数学 内科学
作者
Chenglong Wang,Takayasu Moriya,Yuichiro Hayashi,Holger R. Roth,Le Lü,Masahiro Oda,Hirotsugu Ohkubo,Kensaku Mori
出处
期刊:Medical Imaging 2019: Computer-Aided Diagnosis 被引量:10
标识
DOI:10.1117/12.2512746
摘要

Accurate classification and precise quantification of interstitial lung disease (ILD) types on CT images remain important challenges in clinical diagnosis. Multi-modality image information is required to assist diagnosing diseases. To build scalable deep-learning solutions for this problem, how to take full advantage of existing large-scale datasets in modern hospitals has become a critical task. In this paper, we present DeepILD, as a novel computer-aided diagnostic framework to address the ILD classification task only from single modality (CT image) using a deep neural network. More specifically, we propose integrating spherical semi-supervised K- means clustering and convolutional neural networks for ILD classification and disease quantification. We firstly use semi-supervised spherical K-means to divide the CT lung area into normal and abnormal sub-regions. A convolutional neural network (CNN) is subsequently invoked to perform training using image patches extracted from the abnormal regions. Here, we focus on the classification of three chronic fibrosing ILD types: idiopathic pulmonary fibrosis (IPF), idiopathic non-specific interstitial pneumonia (iNSIP), and chronic hypersensitivity pneumonia (CHP). Excellent classification accuracy has been achieved using a dataset of 188 CT scans; in particular, our IPF classification reached about 88% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
镓氧锌钇铀应助YY采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
fyattojsk应助科研通管家采纳,获得30
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
嘻嘻应助科研通管家采纳,获得10
刚刚
嘻嘻应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
zz关闭了zz文献求助
2秒前
2秒前
科研通AI2S应助likke采纳,获得10
3秒前
Ava应助OOK采纳,获得10
5秒前
6秒前
123完成签到 ,获得积分10
7秒前
7秒前
8秒前
可莉完成签到 ,获得积分10
10秒前
深情安青应助123345采纳,获得10
10秒前
hxj完成签到,获得积分10
11秒前
11秒前
温柔觅松发布了新的文献求助10
12秒前
科研通AI6应助轩辕断天采纳,获得10
13秒前
13秒前
waoller1发布了新的文献求助10
13秒前
CipherSage应助刘永红采纳,获得10
13秒前
丁丁完成签到 ,获得积分10
16秒前
16秒前
likke发布了新的文献求助10
17秒前
17秒前
twbsci发布了新的文献求助10
18秒前
12x发布了新的文献求助10
18秒前
18秒前
干净的烧鹅完成签到,获得积分10
20秒前
zz关闭了zz文献求助
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658