Pareto Optimization of Combinatorial Mutagenesis Libraries

突变 概括性 帕累托原理 计算机科学 蛋白质设计 计算生物学 突变 情报检索 遗传学 生物 蛋白质结构 数学 数学优化 基因 生物化学 心理治疗师 心理学
作者
Deeptak Verma,Gevorg Grigoryan,Chris Bailey‐Kellogg
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:16 (4): 1143-1153 被引量:9
标识
DOI:10.1109/tcbb.2018.2858794
摘要

In order to increase the hit rate of discovering diverse, beneficial protein variants via high-throughput screening, we have developed a computational method to optimize combinatorial mutagenesis libraries for overall enrichment in two distinct properties of interest. Given scoring functions for evaluating individual variants, POCoM (Pareto Optimal Combinatorial Mutagenesis) scores entire libraries in terms of averages over their constituent members, and designs optimal libraries as sets of mutations whose combinations make the best trade-offs between average scores. This represents the first general-purpose method to directly design combinatorial libraries for multiple objectives characterizing their constituent members. Despite being rigorous in mapping out the Pareto frontier, it is also very fast even for very large libraries (e.g., designing 30 mutation, billion-member libraries in only hours). We here instantiate POCoM with scores based on a target's protein structure and its homologs' sequences, enabling the design of libraries containing variants balancing these two important yet quite different types of information. We demonstrate POCoM's generality and power in case study applications to green fluorescent protein, cytochrome P450, and β-lactamase. Analysis of the POCoM library designs provides insights into the trade-offs between structure- and sequence-based scores, as well as the impacts of experimental constraints on library designs. POCoM libraries incorporate mutations that have previously been found favorable experimentally, while diversifying the contexts in which these mutations are situated and maintaining overall variant quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大喜完成签到,获得积分10
刚刚
可爱的函函应助nashanbei采纳,获得10
刚刚
2秒前
qiao发布了新的文献求助10
3秒前
Akim应助Ma_Fangru采纳,获得30
4秒前
5秒前
十月的天空完成签到,获得积分10
6秒前
7秒前
星星轨迹发布了新的文献求助10
9秒前
10秒前
钦林发布了新的文献求助10
13秒前
13秒前
14秒前
heheheli发布了新的文献求助10
14秒前
15秒前
在水一方应助车灵波采纳,获得10
15秒前
16秒前
FashionBoy应助xiaoxiaoz采纳,获得10
17秒前
舒适访风发布了新的文献求助10
17秒前
hmgdktf发布了新的文献求助10
18秒前
大木头发布了新的文献求助10
18秒前
19秒前
wj完成签到,获得积分10
19秒前
20秒前
21秒前
22秒前
22秒前
赵凌完成签到,获得积分10
24秒前
Shahid完成签到,获得积分20
24秒前
张 大头发布了新的文献求助10
25秒前
哩哩发布了新的文献求助10
25秒前
九木德完成签到 ,获得积分10
25秒前
脑洞疼应助XUAN采纳,获得10
25秒前
Mercury发布了新的文献求助10
27秒前
赵凌发布了新的文献求助10
27秒前
28秒前
孙意冉完成签到,获得积分10
30秒前
PATTOM发布了新的文献求助10
33秒前
33秒前
xixifu发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238