卡尔曼滤波器
扩展卡尔曼滤波器
控制理论(社会学)
非线性系统
故障检测与隔离
不变扩展卡尔曼滤波器
随机游动
非线性滤波器
颗粒过滤器
高斯分布
计算机科学
数学
滤波器(信号处理)
集合卡尔曼滤波器
无味变换
快速卡尔曼滤波
算法
统计
人工智能
滤波器设计
物理
计算机视觉
量子力学
控制(管理)
作者
Zeinab Mahmoudi,Sabrina Lyngbye Wendt,Dimitri Boiroux,Morten Hagdrup,Kirsten Nørgaard,Niels Kjølstad Poulsen,Henrik Madsen,John Bagterp Jørgensen
标识
DOI:10.1109/embc.2016.7591484
摘要
The purpose of this study is to compare the performance of three nonlinear filters in online drift detection of continuous glucose monitors. The nonlinear filters are the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the particle filter (PF). They are all based on a nonlinear model of the glucose-insulin dynamics in people with type 1 diabetes. Drift is modelled by a Gaussian random walk and is detected based on the statistical tests of the 90-min prediction residuals of the filters. The unscented Kalman filter had the highest average F score of 85.9%, and the smallest average detection delay of 84.1%, with the average detection sensitivity of 82.6%, and average specificity of 91.0%.
科研通智能强力驱动
Strongly Powered by AbleSci AI