DeepSleepNet: A Model for Automatic Sleep Stage Scoring Based on Raw Single-Channel EEG

计算机科学 脑电图 睡眠阶段 睡眠(系统调用) 人工智能 原始数据 卷积神经网络 频道(广播) 模式识别(心理学) 编码 语音识别 机器学习 多导睡眠图 心理学 精神科 操作系统 程序设计语言 生物化学 计算机网络 化学 基因
作者
Akara Supratak,Hao Dong,Chao Wu,Yike Guo
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:25 (11): 1998-2008 被引量:1002
标识
DOI:10.1109/tnsre.2017.2721116
摘要

The present study proposes a deep learning model, named DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG. Most of the existing methods rely on hand-engineered features which require prior knowledge of sleep analysis. Only a few of them encode the temporal information such as transition rules, which is important for identifying the next sleep stages, into the extracted features. In the proposed model, we utilize Convolutional Neural Networks to extract time-invariant features, and bidirectional-Long Short-Term Memory to learn transition rules among sleep stages automatically from EEG epochs. We implement a two-step training algorithm to train our model efficiently. We evaluated our model using different single-channel EEGs (F4-EOG(Left), Fpz-Cz and Pz-Oz) from two public sleep datasets, that have different properties (e.g., sampling rate) and scoring standards (AASM and R&K). The results showed that our model achieved similar overall accuracy and macro F1-score (MASS: 86.2%-81.7, Sleep-EDF: 82.0%-76.9) compared to the state-of-the-art methods (MASS: 85.9%-80.5, Sleep-EDF: 78.9%-73.7) on both datasets. This demonstrated that, without changing the model architecture and the training algorithm, our model could automatically learn features for sleep stage scoring from different raw single-channel EEGs from different datasets without utilizing any hand-engineered features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingo完成签到,获得积分20
刚刚
刚刚
Crazy发布了新的文献求助10
1秒前
冷静的羿发布了新的文献求助10
2秒前
2秒前
2秒前
Efei完成签到,获得积分10
2秒前
weywe完成签到,获得积分10
3秒前
畅快太君完成签到,获得积分20
3秒前
3秒前
bingo发布了新的文献求助30
4秒前
zcx关闭了zcx文献求助
4秒前
王翎力完成签到,获得积分10
5秒前
嘻嘻发布了新的文献求助10
5秒前
Cookies完成签到,获得积分10
7秒前
务实奎发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
9秒前
yang发布了新的文献求助10
9秒前
Jerry20184完成签到 ,获得积分10
10秒前
11秒前
科目三应助一碗橘子冻采纳,获得10
12秒前
12秒前
13秒前
present完成签到,获得积分20
13秒前
13秒前
深情安青应助leon采纳,获得10
14秒前
Jasper应助yang采纳,获得10
14秒前
小羊爱吃蓝莓完成签到,获得积分10
15秒前
15秒前
Advance.Cheng发布了新的文献求助10
16秒前
16秒前
星辰大海应助静心安逸采纳,获得10
16秒前
17秒前
傢誠完成签到,获得积分10
17秒前
tian发布了新的文献求助10
18秒前
RAnDw完成签到,获得积分20
18秒前
bkagyin应助yyyyyxy采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798