亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Representation Learning of Knowledge Graphs with Entity Descriptions

计算机科学 知识图 编码 代表(政治) 人工智能 编码器 知识表示与推理 自然语言处理 语义学(计算机科学) 概念图 实体链接 图形 特征学习 情报检索 理论计算机科学 知识库 程序设计语言 操作系统 基因 化学 法学 政治 生物化学 政治学
作者
Rong Xie,Zhiyuan Liu,Jia Jia,Huanbo Luan,Maosong Sun
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:30 (1) 被引量:400
标识
DOI:10.1609/aaai.v30i1.10329
摘要

Representation learning (RL) of knowledge graphs aims to project both entities and relations into a continuous low-dimensional space. Most methods concentrate on learning representations with knowledge triples indicating relations between entities. In fact, in most knowledge graphs there are usually concise descriptions for entities, which cannot be well utilized by existing methods. In this paper, we propose a novel RL method for knowledge graphs taking advantages of entity descriptions. More specifically, we explore two encoders, including continuous bag-of-words and deep convolutional neural models to encode semantics of entity descriptions. We further learn knowledge representations with both triples and descriptions. We evaluate our method on two tasks, including knowledge graph completion and entity classification. Experimental results on real-world datasets show that, our method outperforms other baselines on the two tasks, especially under the zero-shot setting, which indicates that our method is capable of building representations for novel entities according to their descriptions. The source code of this paper can be obtained from https://github.com/xrb92/DKRL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桥西小河完成签到 ,获得积分10
16秒前
Nicole完成签到,获得积分10
20秒前
传奇3应助科研通管家采纳,获得150
28秒前
烟花应助科研通管家采纳,获得10
28秒前
yys10l完成签到,获得积分10
31秒前
yys完成签到,获得积分10
44秒前
1分钟前
白云发布了新的文献求助10
1分钟前
1分钟前
Nicole发布了新的文献求助10
1分钟前
悦耳冬萱完成签到 ,获得积分10
1分钟前
彩虹儿应助af采纳,获得10
2分钟前
HRB完成签到 ,获得积分10
2分钟前
Adi完成签到,获得积分10
2分钟前
3分钟前
af完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
所所应助weinaonao采纳,获得10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
海风奕婕完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
6分钟前
weinaonao发布了新的文献求助10
6分钟前
6分钟前
11完成签到,获得积分10
6分钟前
11发布了新的文献求助10
7分钟前
充电宝应助weinaonao采纳,获得10
7分钟前
7分钟前
孙国扬发布了新的文献求助10
7分钟前
11完成签到 ,获得积分10
7分钟前
hugeyoung完成签到,获得积分10
8分钟前
9分钟前
李健应助yukky采纳,获得30
9分钟前
白云完成签到,获得积分10
9分钟前
白云发布了新的文献求助10
9分钟前
9分钟前
yukky发布了新的文献求助30
9分钟前
9分钟前
weinaonao发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926702
求助须知:如何正确求助?哪些是违规求助? 4196320
关于积分的说明 13032388
捐赠科研通 3968553
什么是DOI,文献DOI怎么找? 2175046
邀请新用户注册赠送积分活动 1192206
关于科研通互助平台的介绍 1102505