Relational-Regularized Discriminative Sparse Learning for Alzheimer’s Disease Diagnosis

判别式 人工智能 机器学习 特征选择 神经影像学 模式识别(心理学) 计算机科学 特征向量 相似性(几何) 正规化(语言学) 心理学 图像(数学) 精神科
作者
Baiying Lei,Peng Yang,Tianfu Wang,Siping Chen,Dong Ni
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:47 (4): 1102-1113 被引量:108
标识
DOI:10.1109/tcyb.2016.2644718
摘要

Accurate identification and understanding informative feature is important for early Alzheimer's disease (AD) prognosis and diagnosis. In this paper, we propose a novel discriminative sparse learning method with relational regularization to jointly predict the clinical score and classify AD disease stages using multimodal features. Specifically, we apply a discriminative learning technique to expand the class-specific difference and include geometric information for effective feature selection. In addition, two kind of relational information are incorporated to explore the intrinsic relationships among features and training subjects in terms of similarity learning. We map the original feature into the target space to identify the informative and predictive features by sparse learning technique. A unique loss function is designed to include both discriminative learning and relational regularization methods. Experimental results based on a total of 805 subjects [including 226 AD patients, 393 mild cognitive impairment (MCI) subjects, and 186 normal controls (NCs)] from AD neuroimaging initiative database show that the proposed method can obtain a classification accuracy of 94.68% for AD versus NC, 80.32% for MCI versus NC, and 74.58% for progressive MCI versus stable MCI, respectively. In addition, we achieve remarkable performance for the clinical scores prediction and classification label identification, which has efficacy for AD disease diagnosis and prognosis. The algorithm comparison demonstrates the effectiveness of the introduced learning techniques and superiority over the state-of-the-arts methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曹官子发布了新的文献求助10
刚刚
刚刚
chuckle完成签到,获得积分10
1秒前
打打应助尤瑟夫采纳,获得10
1秒前
1秒前
yinnn完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
专注淇完成签到,获得积分20
4秒前
KING完成签到,获得积分10
4秒前
5秒前
5秒前
研友_5Y9775完成签到,获得积分20
5秒前
5秒前
无敌小奶龙完成签到,获得积分10
5秒前
方旋完成签到,获得积分20
5秒前
彭于晏应助橙橙采纳,获得30
6秒前
Hepatology发布了新的文献求助10
6秒前
甜美幻露完成签到,获得积分10
6秒前
打打应助小葡萄采纳,获得20
7秒前
7秒前
linyudie发布了新的文献求助30
8秒前
8秒前
曾阿牛发布了新的文献求助10
10秒前
10秒前
甜美幻露发布了新的文献求助10
10秒前
11秒前
11秒前
天涯发布了新的文献求助10
11秒前
11秒前
11秒前
Xiebro完成签到 ,获得积分10
12秒前
小可不怕困难完成签到,获得积分10
12秒前
zhoushuhui完成签到 ,获得积分10
13秒前
潇潇发布了新的文献求助10
14秒前
张文静发布了新的文献求助10
14秒前
14秒前
悦耳青梦发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601468
求助须知:如何正确求助?哪些是违规求助? 4686975
关于积分的说明 14846893
捐赠科研通 4681115
什么是DOI,文献DOI怎么找? 2539378
邀请新用户注册赠送积分活动 1506298
关于科研通互助平台的介绍 1471297