亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Role of Cathode-Electrolyte-Ferroelectric Interface for High Performance Lithium Ion Battery

材料科学 阴极 电解质 铁电性 锂(药物) 薄膜 脉冲激光沉积 纳米技术 电极 化学工程 分析化学(期刊) 光电子学 电介质 化学 物理化学 医学 色谱法 工程类 内分泌学
作者
Sou Yasuhara,Keisuke Chajima,Takashi Teranishi,Shintaro Yasui,Tomoyasu Taniyama,Mitsuru Itoh
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (3): 504-504
标识
DOI:10.1149/ma2016-02/3/504
摘要

Next generation lithium ion battery(LIB) should be endowed with a performance of high-speed chargeability and dischargeability. LiCoO 2 is commercially used as a cathode material of LIB but long period of time is generally needed to charge, which is originated from diffusion-rate-limitation of lithium ions. Usually, charge-discharge reaction is impeded by the side reaction at the electrode/electrolyte interface, where the cathode is coated by a solid electrolyte interface (SEI). The formation of SEI is well recognized in LIB and it mainly blocks intercalation/deintercaration of lithium ion into/from the cathode. In 2014, Teranishi et al. reported that LiCoO 2 supported with ferroelectric BaTiO 3 showed a good performance at high charge-discharge rate measurement. 1,2 However, at the present time, the role of BaTiO 3 in the improvement of charge-discharge speed is unknown. To make this point clear, we have fabricated epitaxial thin films and dots of BaTiO 3 on single crystalline LiCoO 2 films, evaluated the rate property of the charge and discharge of prepared samples, and examined the role of BaTiO 3 . Firstly, we prepared ‘Bare-LiCoO 2 ’ which was LiCoO 2 epitaxial thin films deposited on conductive SrRuO 3 /(100)SrTiO 3 substrates by pulsed laser deposition method.Then we fabricated two types of BaTiO 3 /LiCoO 2 epitaxial thin films. One is ‘Planer BaTiO 3 ’, the other ‘Dot BaTiO 3 ’. ‘Planer BaTiO 3 ’ were coated by a sub-nm thickness of BaTiO 3 on LiCoO 2 surface. ‘Dot BaTiO 3 ’ were partially coated by BaTiO 3 nano-dots on LiCoO 2 surface. We succeeded to obtain different shaped BaTiO 3 by adjusting the P (O 2 ) during deposition. Crystal structure of thin films were evaluated by high resolution X-ray diffraction (HRXRD) and cross sectional high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). We also prepared coin cell(half-cell); Li│1mol/L LiPF 6 EC:DEC (3:7 v/v) │LiCoO 2 and measured cathode properties by successive charge-discharge measurements. Cut off potential was set 3.3 V - 4.2 V vs. Li + /Li and charge-discharge rate was investigated in the range of 1 C to 100 C. Out of plane XRD measurement showed that LiCoO 2 104 was grown along (100) c SrRuO 3 //(100)SrTiO 3 001 without any secondary phases and other orientations. HRXRD-RSM measurement clearly showed that all the prepared films were found to be epitaxially grown on (100)SrTiO 3 substrates. From HAADF-STEM-EDS images, BaTiO 3 layer was also found to be epitaxially grown on LiCoO 2 . All epitaxial relationships of each layers are expressed as follows; [001]BaTiO 3 //[104]LiCoO 2 //[001]SrRuO 3 //[001]SrTiO 3 , [100]BaTiO 3 //[0-14]LiCoO 2 //[100]SrRuO 3 //[100]SrTiO 3 and [010]BaTiO 3 //[-114]LiCoO 2 //[010]SrRuO 3 //[010]SrTiO 3 . We performed to measure charge-discharge cycle for ‘Bare LiCoO 2 ’ films. The charge-discharge curve was confirmed to be almost similar to the bulk one. 2 nm-‘Planer BaTiO 3 ’ films showed lower discharge capacity at high C rate than ‘Bare LiCoO 2 ’ one. Then, 1 nm-‘Planer BaTiO 3 ’ films showed better performance at high C rate than that of ‘Bare LiCoO 2 ’ and 2 nm-‘Planer BaTiO 3 ’ films. On the other hand, ‘Dot BaTiO 3 ’ films showed the best performance at high C rate, discharge capacity at 100 C only reduced by 40% of that at 1 C. Only ‘Dot BaTiO 3 ’ films were still working at 100 C even though the other type films were not working under same measurement condition. Here, we will discuss about effect of film thickness of BaTiO 3 . 1 nm-‘Planer BaTiO 3 ’ films (NOT fully covered on LiCoO 2 ) worked as cathode however 2 nm-‘Planer BaTiO 3 ’ one (fully covered on LiCoO 2 ) did not work. It is considered that Li + cannot penetrate into the inside of BaTiO 3 grains however it could pass through grain boundaries. From the result of ‘Dot BaTiO 3 ’ films, we expect that an enhancement of discharge capacity at high C rate was caused by BaTiO 3 /LiCoO 2 /electrolyte three-phase interfaces. It is informed that ‘electric field concentration’ may be occurred around the three-phase interfaces, then Li + are expected preferentially to pass around the three-phase interfaces. In summary, the origin of this enhancement by BaTiO 3 was attributed to the three-phase interface due to an electric field concentration. The necessity of BaTiO 3 for the enhancement of the charge-discharge performance is still unclear because similar reports using non ferroelectric ZrO 2 3 and Al 2 O 3 4 showed enhancement of Li + intercalation. However, dischargecapacity ratio of 10 C/1 C in this study is better than these previous reports. 1. T. Teranishi et al. , Appl. Phys. Lett. , 105 , 143904 (2014) 2. T. Teranishi et al. , ECS Electrochem. Lett. , 4 (12) , A137 (2015) 3. D. Takamatsu et al. , J. Electrochem. Soc. , 160 (5) , A3054 (2013) 4. I. D. Scott, et al. , Nano Lett ., 11 , 414 (2011)

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WXKennyS发布了新的文献求助10
1秒前
王饱饱完成签到 ,获得积分10
49秒前
ljl86400完成签到,获得积分10
58秒前
1分钟前
pursu发布了新的文献求助30
1分钟前
不安的未来完成签到,获得积分10
1分钟前
pursu完成签到,获得积分10
1分钟前
blenx完成签到,获得积分10
1分钟前
yf完成签到 ,获得积分10
2分钟前
李健应助科研通管家采纳,获得10
2分钟前
3分钟前
慕青发布了新的文献求助10
3分钟前
SCI完成签到,获得积分10
3分钟前
3分钟前
WXKennyS发布了新的文献求助10
3分钟前
默默完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
陈彦希发布了新的文献求助10
4分钟前
Nikki发布了新的文献求助10
4分钟前
5分钟前
Nikki完成签到,获得积分10
5分钟前
5分钟前
sissie发布了新的文献求助10
5分钟前
李健应助sissie采纳,获得10
5分钟前
李小强完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
MaKJ发布了新的文献求助10
7分钟前
7分钟前
7分钟前
Mingyue123发布了新的文献求助10
7分钟前
yb完成签到,获得积分10
7分钟前
weibo完成签到,获得积分10
7分钟前
PALMS发布了新的文献求助10
7分钟前
PALMS完成签到,获得积分10
8分钟前
怕黑犀牛完成签到 ,获得积分10
9分钟前
9分钟前
absb发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357048
求助须知:如何正确求助?哪些是违规求助? 4488644
关于积分的说明 13972390
捐赠科研通 4389749
什么是DOI,文献DOI怎么找? 2411714
邀请新用户注册赠送积分活动 1404269
关于科研通互助平台的介绍 1378387