Ternary Neural Networks with Fine-Grained Quantization

计算机科学 量化(信号处理) 算法 残差神经网络 三元运算 管道(软件) 人工神经网络 计算机工程 人工智能 程序设计语言
作者
Naveen Mellempudi,Abhisek Kundu,Dheevatsa Mudigere,Dipankar Das,Bharat Kaul,Pradeep Dubey
出处
期刊:Cornell University - arXiv 被引量:64
摘要

We propose a novel fine-grained quantization (FGQ) method to ternarize pre-trained full precision models, while also constraining activations to 8 and 4-bits. Using this method, we demonstrate a minimal loss in classification accuracy on state-of-the-art topologies without additional training. We provide an improved theoretical formulation that forms the basis for a higher quality solution using FGQ. Our method involves ternarizing the original weight tensor in groups of $N$ weights. Using $N=4$, we achieve Top-1 accuracy within $3.7\%$ and $4.2\%$ of the baseline full precision result for Resnet-101 and Resnet-50 respectively, while eliminating $75\%$ of all multiplications. These results enable a full 8/4-bit inference pipeline, with best-reported accuracy using ternary weights on ImageNet dataset, with a potential of $9\times$ improvement in performance. Also, for smaller networks like AlexNet, FGQ achieves state-of-the-art results. We further study the impact of group size on both performance and accuracy. With a group size of $N=64$, we eliminate $\approx99\%$ of the multiplications; however, this introduces a noticeable drop in accuracy, which necessitates fine tuning the parameters at lower precision. We address this by fine-tuning Resnet-50 with 8-bit activations and ternary weights at $N=64$, improving the Top-1 accuracy to within $4\%$ of the full precision result with $<30\%$ additional training overhead. Our final quantized model can run on a full 8-bit compute pipeline using 2-bit weights and has the potential of up to $15\times$ improvement in performance compared to baseline full-precision models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琅琊为刃完成签到,获得积分10
刚刚
yujingyang发布了新的文献求助30
1秒前
不胜寒完成签到,获得积分10
1秒前
1秒前
Ava应助wonwoo采纳,获得10
1秒前
毛毛完成签到,获得积分10
1秒前
科研通AI5应助瞿选葵采纳,获得10
1秒前
Uncle发布了新的文献求助10
2秒前
山与发布了新的文献求助10
2秒前
kabayao发布了新的文献求助10
2秒前
2秒前
酷波er应助HZY采纳,获得10
3秒前
Ava应助dch采纳,获得10
3秒前
3秒前
Lucas应助Arthur采纳,获得10
4秒前
所所应助Arthur采纳,获得10
4秒前
ding应助Arthur采纳,获得10
4秒前
研友_VZG7GZ应助Arthur采纳,获得10
4秒前
酷波er应助Arthur采纳,获得30
4秒前
我是老大应助Arthur采纳,获得10
4秒前
4秒前
Orange应助11采纳,获得10
5秒前
体贴的曼凝完成签到 ,获得积分10
5秒前
毛毛发布了新的文献求助10
5秒前
5秒前
Jenana发布了新的文献求助100
5秒前
甘_完成签到,获得积分10
7秒前
7秒前
9秒前
shenglll发布了新的文献求助30
9秒前
9秒前
啦啦啦发布了新的文献求助10
9秒前
bkagyin应助辛勤太阳采纳,获得10
10秒前
Ts关注了科研通微信公众号
10秒前
天天快乐应助sys采纳,获得10
10秒前
852应助Arthur采纳,获得50
11秒前
思源应助Arthur采纳,获得10
11秒前
搜集达人应助Arthur采纳,获得10
11秒前
11秒前
Hello应助Arthur采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
Plant–Pollinator Interactions: From Specialization to Generalization 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589652
求助须知:如何正确求助?哪些是违规求助? 3157956
关于积分的说明 9518222
捐赠科研通 2861061
什么是DOI,文献DOI怎么找? 1572146
邀请新用户注册赠送积分活动 737721
科研通“疑难数据库(出版商)”最低求助积分说明 722522