Competing for Attention in Social Communication Markets

通信源 竞赛(生物学) 激励 社会化媒体 微观经济学 社交网络(社会语言学) 人际关系 现象 经济 计算机科学 社会心理学 电信 心理学 万维网 物理 生物 量子力学 生态学
作者
Ganesh Iyer,Zsolt Katona
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:62 (8): 2304-2320 被引量:73
标识
DOI:10.1287/mnsc.2015.2209
摘要

We investigate the incentives for social communication in the new social media technologies. Three features of online social communication are represented in the model. First, new social media platforms allow for increased connectivity; i.e., they enable sending messages to many more receivers, for the same fixed cost, compared to traditional word of mouth. Second, users contribute content because they derive status- or image-based utility from being listened to by their peers. Third, we capture the role of social differentiation, or how social distance between people affects their preferences for messages. In the model, agents endogenously decide whether to be a sender of information and then compete for the attention of receivers. An important point of this paper is that social communication incentives diminish even as the reach or the span of communication increases. As the span of communication increases, competition between senders for receiver attention becomes more intense, resulting in senders competing with greater equilibrium messaging effort. This in turn leads to lower equilibrium payoffs and the entry of fewer senders. This result provides a strategic rationale for the so-called participation inequality phenomenon, which is a characteristic of many social media platforms. We also show that social differentiation may enhance or deter sender entry depending on whether it can be endogenously influenced by senders. Finally, we examine how the underlying network structure (in terms of its density and its degree distribution) affects communication and uncover a nonmonotonic pattern in that increased connectivity first increases and then reduces the entry of senders. This paper was accepted by Pradeep Chintagunta, marketing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
s1m0n_123发布了新的文献求助10
刚刚
硝基发布了新的文献求助10
刚刚
安氏月月发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
笨笨含羞草完成签到,获得积分10
3秒前
7秒前
11秒前
cpp完成签到,获得积分20
12秒前
jia雪完成签到,获得积分10
13秒前
13秒前
渠安发布了新的文献求助300
14秒前
15秒前
15秒前
领导范儿应助万万没想到采纳,获得10
18秒前
18秒前
NGU发布了新的文献求助10
18秒前
震动的宛菡完成签到 ,获得积分10
20秒前
北风歌完成签到,获得积分10
21秒前
22秒前
maggiexjl完成签到,获得积分10
22秒前
22秒前
娃娃菜妮发布了新的文献求助10
22秒前
凯凯发布了新的文献求助10
23秒前
23秒前
852应助宥沐采纳,获得10
23秒前
23秒前
Tracey16完成签到,获得积分10
23秒前
所所应助落花生采纳,获得10
25秒前
25秒前
YangHuilin发布了新的文献求助20
26秒前
27秒前
ehsl完成签到,获得积分10
27秒前
我爱小juju发布了新的文献求助10
28秒前
28秒前
领导范儿应助傲娇林采纳,获得10
29秒前
lcx发布了新的文献求助10
29秒前
Adi完成签到,获得积分10
30秒前
年轻的凝云完成签到 ,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474